固氮菌株Ag45/Mut15和AgPM24的基因组图谱

P. Normand, P. Pujić, Danis Abrouk, Spandana Vemulapally, Trina M Guerra, Camila Carlos-Shanley, D. Hahn
{"title":"固氮菌株Ag45/Mut15和AgPM24的基因组图谱","authors":"P. Normand, P. Pujić, Danis Abrouk, Spandana Vemulapally, Trina M Guerra, Camila Carlos-Shanley, D. Hahn","doi":"10.7150/jgen.74788","DOIUrl":null,"url":null,"abstract":"The genomes of two nitrogen-fixing Frankia strains, Ag45/Mut15 and AgPM24, isolated from root nodules of Alnus glutinosa are described as representatives of a novel candidate species. Phylogenomic and ANI analyses confirmed that both strains are related to cluster 1 frankiae, and that both strains belong to a novel species. At 6.4 - 6.7 Mb, their genomes were smaller than those of other cultivated Alnus-infective cluster 1 strains but larger than that of the non-cultivated Alnus-infective cluster 1 Sp+ strain AgTrS that was their closest neighbor as assessed by ANI. Comparative genomic analyses identified genes essential for nitrogen-fixation, gene composition as regards COGs, secondary metabolites clusters and transcriptional regulators typical of those from Alnus-infective cluster 1 cultivated strains in both genomes. There were 459 genes present in other cultivated Alnus-infective strains lost in the two genomes, spread over the whole of the genome, which indicates genome erosion is taking place in these two strains.","PeriodicalId":15834,"journal":{"name":"Journal of Genomics","volume":"10 1","pages":"49 - 56"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Draft Genomes of Nitrogen-fixing Frankia Strains Ag45/Mut15 and AgPM24 Isolated from Root Nodules of Alnus Glutinosa\",\"authors\":\"P. Normand, P. Pujić, Danis Abrouk, Spandana Vemulapally, Trina M Guerra, Camila Carlos-Shanley, D. Hahn\",\"doi\":\"10.7150/jgen.74788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The genomes of two nitrogen-fixing Frankia strains, Ag45/Mut15 and AgPM24, isolated from root nodules of Alnus glutinosa are described as representatives of a novel candidate species. Phylogenomic and ANI analyses confirmed that both strains are related to cluster 1 frankiae, and that both strains belong to a novel species. At 6.4 - 6.7 Mb, their genomes were smaller than those of other cultivated Alnus-infective cluster 1 strains but larger than that of the non-cultivated Alnus-infective cluster 1 Sp+ strain AgTrS that was their closest neighbor as assessed by ANI. Comparative genomic analyses identified genes essential for nitrogen-fixation, gene composition as regards COGs, secondary metabolites clusters and transcriptional regulators typical of those from Alnus-infective cluster 1 cultivated strains in both genomes. There were 459 genes present in other cultivated Alnus-infective strains lost in the two genomes, spread over the whole of the genome, which indicates genome erosion is taking place in these two strains.\",\"PeriodicalId\":15834,\"journal\":{\"name\":\"Journal of Genomics\",\"volume\":\"10 1\",\"pages\":\"49 - 56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7150/jgen.74788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7150/jgen.74788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

从Alnus glutinosa根瘤中分离的两个固氮Frankia菌株Ag45/Mut15和AgPM24的基因组被描述为一个新的候选物种的代表。系统基因组学和ANI分析证实,这两株菌株都与第1簇frankiae有关,并且都属于一个新种。在6.4 ~ 6.7 Mb,它们的基因组小于其他栽培的桤木感染簇1菌株,但大于非栽培的桤木感染簇1 Sp+菌株AgTrS,后者是它们最近的邻居。比较基因组分析确定了两个基因组中对固氮、COGs基因组成、次生代谢物簇和转录调节因子所必需的基因,这些基因是桤木感染簇1培养菌株的典型基因。在其他培养的桤木侵染菌株中,有459个基因在这两个基因组中丢失,分布在整个基因组中,这表明这两个菌株的基因组正在发生侵蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Draft Genomes of Nitrogen-fixing Frankia Strains Ag45/Mut15 and AgPM24 Isolated from Root Nodules of Alnus Glutinosa
The genomes of two nitrogen-fixing Frankia strains, Ag45/Mut15 and AgPM24, isolated from root nodules of Alnus glutinosa are described as representatives of a novel candidate species. Phylogenomic and ANI analyses confirmed that both strains are related to cluster 1 frankiae, and that both strains belong to a novel species. At 6.4 - 6.7 Mb, their genomes were smaller than those of other cultivated Alnus-infective cluster 1 strains but larger than that of the non-cultivated Alnus-infective cluster 1 Sp+ strain AgTrS that was their closest neighbor as assessed by ANI. Comparative genomic analyses identified genes essential for nitrogen-fixation, gene composition as regards COGs, secondary metabolites clusters and transcriptional regulators typical of those from Alnus-infective cluster 1 cultivated strains in both genomes. There were 459 genes present in other cultivated Alnus-infective strains lost in the two genomes, spread over the whole of the genome, which indicates genome erosion is taking place in these two strains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
12 weeks
期刊介绍: Journal of Genomics publishes papers of high quality in all areas of gene, genetics, genomics, proteomics, metabolomics, DNA/RNA, computational biology, bioinformatics, and other relevant areas of research and application. Articles published by the journal are rigorously peer-reviewed. Types of articles include: Research paper, Short research communication, Review or mini-reviews, Commentary, Database, Software.
期刊最新文献
Draft genomes and assemblies of the ectomycorrhizal basidiomycetes Scleroderma citrinum hr and S. yunnanense jo associated with chestnut trees. COMT and MTHFR Genetic Variants Combined Effects on Adolescent Idiopathic Scoliosis Progression. First Report and Genome Resource of Monilinia vaccinii-corymbosi, causal agent of Mummy Berry Disease of Black Huckleberry (Vaccinium membranaceum). The impact of Elaeagnus angustifolia root exudates on Parafrankia soli NRRL B-16219 exoproteome. Genome Resource of Raspberry Root Rot Pathogen Phytophthora gonapodyides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1