A. Arosio, R. Cristofani, O. Pansarasa, V. Crippa, C. Riva, R. Sirtori, V. Menendez, N. Riva, F. Gerardi, C. Lunetta, Cristina Cereda, A. Poletti, C. Ferrarese, L. Tremolizzo, G. Sala
{"title":"散发性ALS患者的淋巴细胞中HSC70表达降低,并有助于TDP-43的积累","authors":"A. Arosio, R. Cristofani, O. Pansarasa, V. Crippa, C. Riva, R. Sirtori, V. Menendez, N. Riva, F. Gerardi, C. Lunetta, Cristina Cereda, A. Poletti, C. Ferrarese, L. Tremolizzo, G. Sala","doi":"10.1080/21678421.2019.1672749","DOIUrl":null,"url":null,"abstract":"Abstract Aim: The demonstration that chaperone-mediated autophagy (CMA) contributes to the degradation of TDP-43, the main constituent of cytoplasmic inclusions typically found in motor neurons of patients with sporadic amyotrophic lateral sclerosis (sALS), has pointed out a possible involvement of CMA in aggregate formation. To explore this possibility, in this study, we verified the presence of a possible systemic CMA alteration in sALS patients and its effect on TDP-43 expression. Materials and methods: Gene and protein expression of the cytosolic chaperone HSC70 and the lysosome receptor LAMP2A, the two pivotal mediators of CMA, was assessed in peripheral blood mononuclear cells (PBMCs) derived from 30 sALS patients and 30 healthy controls. The expression of TDP-43 and co-chaperones BAG1 and BAG3 was also analyzed. Results: We found reduced HSC70 expression in patient cells, with no change in LAMP2A, and increased insoluble TDP-43 protein levels, with an aberrant intracellular localization. We also observed an unbalanced expression of co-chaperones BAG1 and BAG3. HSC70 down-regulation was confirmed in immortalized lymphoblastoid cell lines derived from sporadic and TARDBP mutant ALS patients. Lastly, we demonstrated that HSC70 silencing directly increases TDP-43 protein levels in human neuroblastoma cells. Discussion: Our results do not support the existence of a systemic CMA alteration in sALS patients but indicate a direct involvement of HSC70 alterations in ALS pathogenesis.","PeriodicalId":7740,"journal":{"name":"Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21678421.2019.1672749","citationCount":"23","resultStr":"{\"title\":\"HSC70 expression is reduced in lymphomonocytes of sporadic ALS patients and contributes to TDP-43 accumulation\",\"authors\":\"A. Arosio, R. Cristofani, O. Pansarasa, V. Crippa, C. Riva, R. Sirtori, V. Menendez, N. Riva, F. Gerardi, C. Lunetta, Cristina Cereda, A. Poletti, C. Ferrarese, L. Tremolizzo, G. Sala\",\"doi\":\"10.1080/21678421.2019.1672749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Aim: The demonstration that chaperone-mediated autophagy (CMA) contributes to the degradation of TDP-43, the main constituent of cytoplasmic inclusions typically found in motor neurons of patients with sporadic amyotrophic lateral sclerosis (sALS), has pointed out a possible involvement of CMA in aggregate formation. To explore this possibility, in this study, we verified the presence of a possible systemic CMA alteration in sALS patients and its effect on TDP-43 expression. Materials and methods: Gene and protein expression of the cytosolic chaperone HSC70 and the lysosome receptor LAMP2A, the two pivotal mediators of CMA, was assessed in peripheral blood mononuclear cells (PBMCs) derived from 30 sALS patients and 30 healthy controls. The expression of TDP-43 and co-chaperones BAG1 and BAG3 was also analyzed. Results: We found reduced HSC70 expression in patient cells, with no change in LAMP2A, and increased insoluble TDP-43 protein levels, with an aberrant intracellular localization. We also observed an unbalanced expression of co-chaperones BAG1 and BAG3. HSC70 down-regulation was confirmed in immortalized lymphoblastoid cell lines derived from sporadic and TARDBP mutant ALS patients. Lastly, we demonstrated that HSC70 silencing directly increases TDP-43 protein levels in human neuroblastoma cells. Discussion: Our results do not support the existence of a systemic CMA alteration in sALS patients but indicate a direct involvement of HSC70 alterations in ALS pathogenesis.\",\"PeriodicalId\":7740,\"journal\":{\"name\":\"Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21678421.2019.1672749\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/21678421.2019.1672749\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/21678421.2019.1672749","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
HSC70 expression is reduced in lymphomonocytes of sporadic ALS patients and contributes to TDP-43 accumulation
Abstract Aim: The demonstration that chaperone-mediated autophagy (CMA) contributes to the degradation of TDP-43, the main constituent of cytoplasmic inclusions typically found in motor neurons of patients with sporadic amyotrophic lateral sclerosis (sALS), has pointed out a possible involvement of CMA in aggregate formation. To explore this possibility, in this study, we verified the presence of a possible systemic CMA alteration in sALS patients and its effect on TDP-43 expression. Materials and methods: Gene and protein expression of the cytosolic chaperone HSC70 and the lysosome receptor LAMP2A, the two pivotal mediators of CMA, was assessed in peripheral blood mononuclear cells (PBMCs) derived from 30 sALS patients and 30 healthy controls. The expression of TDP-43 and co-chaperones BAG1 and BAG3 was also analyzed. Results: We found reduced HSC70 expression in patient cells, with no change in LAMP2A, and increased insoluble TDP-43 protein levels, with an aberrant intracellular localization. We also observed an unbalanced expression of co-chaperones BAG1 and BAG3. HSC70 down-regulation was confirmed in immortalized lymphoblastoid cell lines derived from sporadic and TARDBP mutant ALS patients. Lastly, we demonstrated that HSC70 silencing directly increases TDP-43 protein levels in human neuroblastoma cells. Discussion: Our results do not support the existence of a systemic CMA alteration in sALS patients but indicate a direct involvement of HSC70 alterations in ALS pathogenesis.
期刊介绍:
Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration is an exciting new initiative. It represents a timely expansion of the journal Amyotrophic Lateral Sclerosis in response to the clinical, imaging pathological and genetic overlap between ALS and frontotemporal dementia. The expanded journal provides outstanding coverage of research in a wide range of issues related to motor neuron diseases, especially ALS (Lou Gehrig’s disease) and cognitive decline associated with frontotemporal degeneration. The journal also covers related disorders of the neuroaxis when relevant to these core conditions.