Rajendran Sugin Elankavi, D. Dinakaran, A. Doss, R.M. Kuppan Chetty, M. M. Ramya
{"title":"一种克服弯曲管道运动奇异性的轮式管道内检测机器人设计","authors":"Rajendran Sugin Elankavi, D. Dinakaran, A. Doss, R.M. Kuppan Chetty, M. M. Ramya","doi":"10.3233/ais-220247","DOIUrl":null,"url":null,"abstract":"This paper discusses the development and design of two wheeled-type In-Pipe Inspection Robots (IPIRs), Kuzhali I and Kuzhali II, which were created to address the limitations of traditional human inspection methods and earlier robot designs. Specifically, the robots aim to overcome the motion singularity experienced by IPIRs when navigating through curved pipes. Kuzhali I was developed with wheels mounted at an asymmetric angle, which enables the wheels to maintain contact with the pipe’s surface, preventing motion singularity. However, Kuzhali I had limitations due to its prismatic mechanism, and thus Kuzhali II was developed with a telescopic mechanism to allow it to pass through vertical pipes with obstacles. Motion analysis was conducted on both robots to demonstrate how they overcome motion singularity and navigate through straight and curved pipelines. Simulation results showed that the forces acting on the robots’ wheels fell within 5 N to 12 N, demonstrating stability while navigating pipeline junctions. Experimental tests were conducted on Kuzhali II, and the results were compared to simulation results, showing an error of less than 5%. The results of the experiments indicate that Kuzhali II is safe to use for pipeline inspection, can navigate through vertical pipelines with ease and can overcome motion singularity in curved pipes. These robots offer a faster, more accurate, and safer alternative to human inspection, which can reduce the risk of pipeline failures and associated environmental and safety hazards.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a wheeled type in-pipe inspection robot to overcome motion singularity in curved pipes\",\"authors\":\"Rajendran Sugin Elankavi, D. Dinakaran, A. Doss, R.M. Kuppan Chetty, M. M. Ramya\",\"doi\":\"10.3233/ais-220247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the development and design of two wheeled-type In-Pipe Inspection Robots (IPIRs), Kuzhali I and Kuzhali II, which were created to address the limitations of traditional human inspection methods and earlier robot designs. Specifically, the robots aim to overcome the motion singularity experienced by IPIRs when navigating through curved pipes. Kuzhali I was developed with wheels mounted at an asymmetric angle, which enables the wheels to maintain contact with the pipe’s surface, preventing motion singularity. However, Kuzhali I had limitations due to its prismatic mechanism, and thus Kuzhali II was developed with a telescopic mechanism to allow it to pass through vertical pipes with obstacles. Motion analysis was conducted on both robots to demonstrate how they overcome motion singularity and navigate through straight and curved pipelines. Simulation results showed that the forces acting on the robots’ wheels fell within 5 N to 12 N, demonstrating stability while navigating pipeline junctions. Experimental tests were conducted on Kuzhali II, and the results were compared to simulation results, showing an error of less than 5%. The results of the experiments indicate that Kuzhali II is safe to use for pipeline inspection, can navigate through vertical pipelines with ease and can overcome motion singularity in curved pipes. These robots offer a faster, more accurate, and safer alternative to human inspection, which can reduce the risk of pipeline failures and associated environmental and safety hazards.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-220247\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-220247","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Design of a wheeled type in-pipe inspection robot to overcome motion singularity in curved pipes
This paper discusses the development and design of two wheeled-type In-Pipe Inspection Robots (IPIRs), Kuzhali I and Kuzhali II, which were created to address the limitations of traditional human inspection methods and earlier robot designs. Specifically, the robots aim to overcome the motion singularity experienced by IPIRs when navigating through curved pipes. Kuzhali I was developed with wheels mounted at an asymmetric angle, which enables the wheels to maintain contact with the pipe’s surface, preventing motion singularity. However, Kuzhali I had limitations due to its prismatic mechanism, and thus Kuzhali II was developed with a telescopic mechanism to allow it to pass through vertical pipes with obstacles. Motion analysis was conducted on both robots to demonstrate how they overcome motion singularity and navigate through straight and curved pipelines. Simulation results showed that the forces acting on the robots’ wheels fell within 5 N to 12 N, demonstrating stability while navigating pipeline junctions. Experimental tests were conducted on Kuzhali II, and the results were compared to simulation results, showing an error of less than 5%. The results of the experiments indicate that Kuzhali II is safe to use for pipeline inspection, can navigate through vertical pipelines with ease and can overcome motion singularity in curved pipes. These robots offer a faster, more accurate, and safer alternative to human inspection, which can reduce the risk of pipeline failures and associated environmental and safety hazards.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.