功率限制器与PIN二极管嵌入腔中,以尽量减少寄生电感

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2022-11-30 DOI:10.26866/jees.2022.6.l.10
D. Jung, Kunsik Park, J. Won, Doohyung Cho, Sung-Un Kwon, H. Jang, Jong-Won Lim
{"title":"功率限制器与PIN二极管嵌入腔中,以尽量减少寄生电感","authors":"D. Jung, Kunsik Park, J. Won, Doohyung Cho, Sung-Un Kwon, H. Jang, Jong-Won Lim","doi":"10.26866/jees.2022.6.l.10","DOIUrl":null,"url":null,"abstract":"This letter introduces a power limiter that limits the input power to protect the receiver when a large power enters the radio frequency receiver. When the power limiter receives a large power signal, a positive-intrinsic-negative (PIN) diode is turned on to limit the input power by lowering the impedance. We analyzed the characteristics of the power limiter according to the method of connecting the PIN diode in parallel with the input and output transmission lines of the power limiter. By embedding a PIN diode into the cavity and minimizing the length of the wire, a power limiter was designed and implemented to minimize parasitic inductance. In the S-band, the proposed power limiter’s insertion loss was below 0.5 dB, and the reflection loss characteristics were below 15 dB. Furthermore, it achieved an output P1dB of 21.8 dBm at 3.5 GHz.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Limiter with PIN Diode Embedded in Cavity to Minimize Parasitic Inductance\",\"authors\":\"D. Jung, Kunsik Park, J. Won, Doohyung Cho, Sung-Un Kwon, H. Jang, Jong-Won Lim\",\"doi\":\"10.26866/jees.2022.6.l.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a power limiter that limits the input power to protect the receiver when a large power enters the radio frequency receiver. When the power limiter receives a large power signal, a positive-intrinsic-negative (PIN) diode is turned on to limit the input power by lowering the impedance. We analyzed the characteristics of the power limiter according to the method of connecting the PIN diode in parallel with the input and output transmission lines of the power limiter. By embedding a PIN diode into the cavity and minimizing the length of the wire, a power limiter was designed and implemented to minimize parasitic inductance. In the S-band, the proposed power limiter’s insertion loss was below 0.5 dB, and the reflection loss characteristics were below 15 dB. Furthermore, it achieved an output P1dB of 21.8 dBm at 3.5 GHz.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2022.6.l.10\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2022.6.l.10","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信介绍了一种功率限制器,当大功率进入射频接收器时,它可以限制输入功率以保护接收器。当功率限制器接收到较大的功率信号时,一个PIN二极管被打开,通过降低阻抗来限制输入功率。根据PIN二极管与功率限制器输入、输出传输线并联的方法,分析了功率限制器的特性。通过在腔内嵌入PIN二极管并减小导线长度,设计并实现了功率限制器,以减小寄生电感。在s波段,功率限制器的插入损耗低于0.5 dB,反射损耗特性低于15 dB。此外,它在3.5 GHz时实现了21.8 dBm的输出P1dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Limiter with PIN Diode Embedded in Cavity to Minimize Parasitic Inductance
This letter introduces a power limiter that limits the input power to protect the receiver when a large power enters the radio frequency receiver. When the power limiter receives a large power signal, a positive-intrinsic-negative (PIN) diode is turned on to limit the input power by lowering the impedance. We analyzed the characteristics of the power limiter according to the method of connecting the PIN diode in parallel with the input and output transmission lines of the power limiter. By embedding a PIN diode into the cavity and minimizing the length of the wire, a power limiter was designed and implemented to minimize parasitic inductance. In the S-band, the proposed power limiter’s insertion loss was below 0.5 dB, and the reflection loss characteristics were below 15 dB. Furthermore, it achieved an output P1dB of 21.8 dBm at 3.5 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency Investigation of Pulse Characteristics of a Novel Cylindrically Slotted Cloaked Antenna Time-Domain Measurement Data Accumulation for Slow Moving Point Target Detection in Heavily Cluttered Environments Using CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1