{"title":"WC/C涂层滚动体对提高轴承寿命的作用","authors":"Ayush Jain, N. Vashishtha, Rajesh Kannan P","doi":"10.1080/02670844.2023.2191885","DOIUrl":null,"url":null,"abstract":"ABSTRACT The research is aimed to understand the effect of WC/C coating on the bearing rolling elements to improve fatigue life in surface distress conditions. The 1–1.5 microns optimized coating thickness was deposited on the steel substrate using the PVD process. The coating’s physical and chemical properties were analysed by X-ray diffraction, scanning electron microscope, contact profilometer, nanoindentation hardness, and micro scratch indenter. The wear properties were compared on a ball-on-disc tribometer with and without a coated specimen. The bearing tests were performed in contaminated and clean lubrication conditions to prove the coating’s effect on bearing life in surface distress conditions. Results show that coated roller bearings perform at least two times that of the standard bearing. The overall benefit of less friction and wear resistance was due to the polishing action and coating transfer mechanism of multi-layer coating which increases oil film thickness between contacts and hence improve bearing life.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"74 - 89"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of WC/C coated rolling element to improve bearing life\",\"authors\":\"Ayush Jain, N. Vashishtha, Rajesh Kannan P\",\"doi\":\"10.1080/02670844.2023.2191885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The research is aimed to understand the effect of WC/C coating on the bearing rolling elements to improve fatigue life in surface distress conditions. The 1–1.5 microns optimized coating thickness was deposited on the steel substrate using the PVD process. The coating’s physical and chemical properties were analysed by X-ray diffraction, scanning electron microscope, contact profilometer, nanoindentation hardness, and micro scratch indenter. The wear properties were compared on a ball-on-disc tribometer with and without a coated specimen. The bearing tests were performed in contaminated and clean lubrication conditions to prove the coating’s effect on bearing life in surface distress conditions. Results show that coated roller bearings perform at least two times that of the standard bearing. The overall benefit of less friction and wear resistance was due to the polishing action and coating transfer mechanism of multi-layer coating which increases oil film thickness between contacts and hence improve bearing life.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":\"39 1\",\"pages\":\"74 - 89\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670844.2023.2191885\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2191885","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Effect of WC/C coated rolling element to improve bearing life
ABSTRACT The research is aimed to understand the effect of WC/C coating on the bearing rolling elements to improve fatigue life in surface distress conditions. The 1–1.5 microns optimized coating thickness was deposited on the steel substrate using the PVD process. The coating’s physical and chemical properties were analysed by X-ray diffraction, scanning electron microscope, contact profilometer, nanoindentation hardness, and micro scratch indenter. The wear properties were compared on a ball-on-disc tribometer with and without a coated specimen. The bearing tests were performed in contaminated and clean lubrication conditions to prove the coating’s effect on bearing life in surface distress conditions. Results show that coated roller bearings perform at least two times that of the standard bearing. The overall benefit of less friction and wear resistance was due to the polishing action and coating transfer mechanism of multi-layer coating which increases oil film thickness between contacts and hence improve bearing life.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.