{"title":"紫茎草可能的预防作用。一些神经退行性疾病的精油","authors":"N. Sahakyan, M. Petrosyan","doi":"10.21926/obm.neurobiol.2204140","DOIUrl":null,"url":null,"abstract":"The present article describes some characteristics of the effect of essential oil (EO) extracted from Ziziphora clinopodioides harvested from Armenian highlands on microglial cell lines (BV-2 wild-type (WT) and acyl-CoA oxidase1 (ACOX1)-deficient (Acox1–/–) cells). The mutant cell line was used as a model to investigate cellular oxidative damage following EO treatment. The main components of the tested EO were pulegone, isomenthone, 1,8-cineole, piperitone, and neomenthole, with concentrations of 42.1%, 9.7%, 8.22%, 7.35%, and 5.9%, respectively, in plants harvested from the high-altitude Armenian landscape. The IC50 value of the EO in the DPPH assay was 7.025 µL/mL. The sub-cytotoxic concentrations (based on the MTT assay) for both cell lines were 5 × 10–1 µL/mL. The catalase activity of the WT cells was decreased following 24-h treatment with the EO, but that of Acox1–/– BV-2 cellswas increased. ACOX1 activity was decreased (up to 49%) at 72hof treatment. These results show the protective effect of the tested EO on Acox1–/– mutantcells.","PeriodicalId":74334,"journal":{"name":"OBM neurobiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Possible Preventive Effect of Ziziphora clinopodioides Lam. Essential Oil on Some Neurodegenerative Disorders\",\"authors\":\"N. Sahakyan, M. Petrosyan\",\"doi\":\"10.21926/obm.neurobiol.2204140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present article describes some characteristics of the effect of essential oil (EO) extracted from Ziziphora clinopodioides harvested from Armenian highlands on microglial cell lines (BV-2 wild-type (WT) and acyl-CoA oxidase1 (ACOX1)-deficient (Acox1–/–) cells). The mutant cell line was used as a model to investigate cellular oxidative damage following EO treatment. The main components of the tested EO were pulegone, isomenthone, 1,8-cineole, piperitone, and neomenthole, with concentrations of 42.1%, 9.7%, 8.22%, 7.35%, and 5.9%, respectively, in plants harvested from the high-altitude Armenian landscape. The IC50 value of the EO in the DPPH assay was 7.025 µL/mL. The sub-cytotoxic concentrations (based on the MTT assay) for both cell lines were 5 × 10–1 µL/mL. The catalase activity of the WT cells was decreased following 24-h treatment with the EO, but that of Acox1–/– BV-2 cellswas increased. ACOX1 activity was decreased (up to 49%) at 72hof treatment. These results show the protective effect of the tested EO on Acox1–/– mutantcells.\",\"PeriodicalId\":74334,\"journal\":{\"name\":\"OBM neurobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OBM neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/obm.neurobiol.2204140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OBM neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/obm.neurobiol.2204140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Possible Preventive Effect of Ziziphora clinopodioides Lam. Essential Oil on Some Neurodegenerative Disorders
The present article describes some characteristics of the effect of essential oil (EO) extracted from Ziziphora clinopodioides harvested from Armenian highlands on microglial cell lines (BV-2 wild-type (WT) and acyl-CoA oxidase1 (ACOX1)-deficient (Acox1–/–) cells). The mutant cell line was used as a model to investigate cellular oxidative damage following EO treatment. The main components of the tested EO were pulegone, isomenthone, 1,8-cineole, piperitone, and neomenthole, with concentrations of 42.1%, 9.7%, 8.22%, 7.35%, and 5.9%, respectively, in plants harvested from the high-altitude Armenian landscape. The IC50 value of the EO in the DPPH assay was 7.025 µL/mL. The sub-cytotoxic concentrations (based on the MTT assay) for both cell lines were 5 × 10–1 µL/mL. The catalase activity of the WT cells was decreased following 24-h treatment with the EO, but that of Acox1–/– BV-2 cellswas increased. ACOX1 activity was decreased (up to 49%) at 72hof treatment. These results show the protective effect of the tested EO on Acox1–/– mutantcells.