木质纤维素生物质的理化特性、热分析和热解动力学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-04-21 DOI:10.1080/17597269.2023.2201732
I. Bakhattar, M. Asbik, A. Koukouch, I. Aadnan, O. Zegaoui, V. Belandria, S. Bonnamy, B. Sarh
{"title":"木质纤维素生物质的理化特性、热分析和热解动力学","authors":"I. Bakhattar, M. Asbik, A. Koukouch, I. Aadnan, O. Zegaoui, V. Belandria, S. Bonnamy, B. Sarh","doi":"10.1080/17597269.2023.2201732","DOIUrl":null,"url":null,"abstract":"Abstract This paper compares and evaluates the physicochemical characterization and thermal analysis of different agricultural lignocellulosic biomasses namely: olive pomace (OP), argan shells (AS), date palm seeds (DS) and hydrochar (HC), obtained from the hydrothermal carbonization (HTC) of OP, in order to identify a good potential fuel for thermochemical conversion systems. Several physicochemical and thermal characterization methods were used. The aforementioned biomasses are mainly composed of cellulose, hemicellulose and lignin as shown by the FTIR and XRD analysis. From energy point of view, the hydrochar (HC) has the highest value of the higher heating value (HHV) (27.86 MJ/kg). These results make (HC) a very good candidate for thermochemical energy conversion technologies. Thereafter, thermal analysis (DSC and TGA) was conducted in an inert atmosphere to analyze the thermal behavior of the samples under well-defined thermal conditions. Right after, two kinetics models were used to estimate pyrolysis kinetic parameters (the activation energy (E) and pre-exponential factor (A)) of the four biomasses. Among those are, for example, olive pomace has (E = 200.104 kJ/mol; A = 7.14E + 21 s−1) and (E = 199.053 kJ/mol; A = 3.58E + 21 s−1) according to KAS and FWO models, respectively. Consequently, pyrolysis of (OP) requires less energy to occur, which promotes its energy performances. GRAPHICAL ABSTRACT","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physicochemical characterization, thermal analysis and pyrolysis kinetics of lignocellulosic biomasses\",\"authors\":\"I. Bakhattar, M. Asbik, A. Koukouch, I. Aadnan, O. Zegaoui, V. Belandria, S. Bonnamy, B. Sarh\",\"doi\":\"10.1080/17597269.2023.2201732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper compares and evaluates the physicochemical characterization and thermal analysis of different agricultural lignocellulosic biomasses namely: olive pomace (OP), argan shells (AS), date palm seeds (DS) and hydrochar (HC), obtained from the hydrothermal carbonization (HTC) of OP, in order to identify a good potential fuel for thermochemical conversion systems. Several physicochemical and thermal characterization methods were used. The aforementioned biomasses are mainly composed of cellulose, hemicellulose and lignin as shown by the FTIR and XRD analysis. From energy point of view, the hydrochar (HC) has the highest value of the higher heating value (HHV) (27.86 MJ/kg). These results make (HC) a very good candidate for thermochemical energy conversion technologies. Thereafter, thermal analysis (DSC and TGA) was conducted in an inert atmosphere to analyze the thermal behavior of the samples under well-defined thermal conditions. Right after, two kinetics models were used to estimate pyrolysis kinetic parameters (the activation energy (E) and pre-exponential factor (A)) of the four biomasses. Among those are, for example, olive pomace has (E = 200.104 kJ/mol; A = 7.14E + 21 s−1) and (E = 199.053 kJ/mol; A = 3.58E + 21 s−1) according to KAS and FWO models, respectively. Consequently, pyrolysis of (OP) requires less energy to occur, which promotes its energy performances. GRAPHICAL ABSTRACT\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17597269.2023.2201732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2201732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physicochemical characterization, thermal analysis and pyrolysis kinetics of lignocellulosic biomasses
Abstract This paper compares and evaluates the physicochemical characterization and thermal analysis of different agricultural lignocellulosic biomasses namely: olive pomace (OP), argan shells (AS), date palm seeds (DS) and hydrochar (HC), obtained from the hydrothermal carbonization (HTC) of OP, in order to identify a good potential fuel for thermochemical conversion systems. Several physicochemical and thermal characterization methods were used. The aforementioned biomasses are mainly composed of cellulose, hemicellulose and lignin as shown by the FTIR and XRD analysis. From energy point of view, the hydrochar (HC) has the highest value of the higher heating value (HHV) (27.86 MJ/kg). These results make (HC) a very good candidate for thermochemical energy conversion technologies. Thereafter, thermal analysis (DSC and TGA) was conducted in an inert atmosphere to analyze the thermal behavior of the samples under well-defined thermal conditions. Right after, two kinetics models were used to estimate pyrolysis kinetic parameters (the activation energy (E) and pre-exponential factor (A)) of the four biomasses. Among those are, for example, olive pomace has (E = 200.104 kJ/mol; A = 7.14E + 21 s−1) and (E = 199.053 kJ/mol; A = 3.58E + 21 s−1) according to KAS and FWO models, respectively. Consequently, pyrolysis of (OP) requires less energy to occur, which promotes its energy performances. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1