{"title":"渐变对称群:平面与简单","authors":"Martin Roelfs, Steven De Keninck","doi":"10.1007/s00006-023-01269-9","DOIUrl":null,"url":null,"abstract":"<div><p>The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a type of graded structure on Lie groups, not evident in their matrix representation. Embracing this graded structure, we prove the invariant decomposition theorem: any composition of <i>k</i> linearly independent reflections can be decomposed into <span>\\(\\lceil {k/2}{\\rceil }\\)</span> commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi–Chasles’ theorem as its 3D Euclidean special case. To demonstrate its utility, we briefly discuss various examples such as Lorentz transformations, Wigner rotations, and screw transformations. The invariant decomposition also directly leads to closed form formulas for the exponential and logarithmic functions for all Spin groups, and identifies elements of geometry such as planes, lines, points, as the invariants of <i>k</i>-reflections. We conclude by presenting a novel algorithm for the construction of matrix/vector representations for geometric algebras <span>\\({\\mathbb {R}}^{{}}_{pqr}\\)</span>, and use this in <span>\\(\\text {E}({3})\\)</span> to illustrate the relationship with the classic covariant, contravariant and adjoint representations for the transformation of points, planes and lines.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Graded Symmetry Groups: Plane and Simple\",\"authors\":\"Martin Roelfs, Steven De Keninck\",\"doi\":\"10.1007/s00006-023-01269-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a type of graded structure on Lie groups, not evident in their matrix representation. Embracing this graded structure, we prove the invariant decomposition theorem: any composition of <i>k</i> linearly independent reflections can be decomposed into <span>\\\\(\\\\lceil {k/2}{\\\\rceil }\\\\)</span> commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi–Chasles’ theorem as its 3D Euclidean special case. To demonstrate its utility, we briefly discuss various examples such as Lorentz transformations, Wigner rotations, and screw transformations. The invariant decomposition also directly leads to closed form formulas for the exponential and logarithmic functions for all Spin groups, and identifies elements of geometry such as planes, lines, points, as the invariants of <i>k</i>-reflections. We conclude by presenting a novel algorithm for the construction of matrix/vector representations for geometric algebras <span>\\\\({\\\\mathbb {R}}^{{}}_{pqr}\\\\)</span>, and use this in <span>\\\\(\\\\text {E}({3})\\\\)</span> to illustrate the relationship with the classic covariant, contravariant and adjoint representations for the transformation of points, planes and lines.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-023-01269-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01269-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a type of graded structure on Lie groups, not evident in their matrix representation. Embracing this graded structure, we prove the invariant decomposition theorem: any composition of k linearly independent reflections can be decomposed into \(\lceil {k/2}{\rceil }\) commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi–Chasles’ theorem as its 3D Euclidean special case. To demonstrate its utility, we briefly discuss various examples such as Lorentz transformations, Wigner rotations, and screw transformations. The invariant decomposition also directly leads to closed form formulas for the exponential and logarithmic functions for all Spin groups, and identifies elements of geometry such as planes, lines, points, as the invariants of k-reflections. We conclude by presenting a novel algorithm for the construction of matrix/vector representations for geometric algebras \({\mathbb {R}}^{{}}_{pqr}\), and use this in \(\text {E}({3})\) to illustrate the relationship with the classic covariant, contravariant and adjoint representations for the transformation of points, planes and lines.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.