稳态参数的似然比梯度估计

Q1 Mathematics Stochastic Systems Pub Date : 2017-07-09 DOI:10.1287/STSY.2018.0023
P. Glynn, Mariana Olvera-Cravioto
{"title":"稳态参数的似然比梯度估计","authors":"P. Glynn, Mariana Olvera-Cravioto","doi":"10.1287/STSY.2018.0023","DOIUrl":null,"url":null,"abstract":"We consider a discrete-time Markov chain $\\boldsymbol{\\Phi}$ on a general state-space ${\\sf X}$, whose transition probabilities are parameterized by a real-valued vector $\\boldsymbol{\\theta}$. Under the assumption that $\\boldsymbol{\\Phi}$ is geometrically ergodic with corresponding stationary distribution $\\pi(\\boldsymbol{\\theta})$, we are interested in estimating the gradient $\\nabla \\alpha(\\boldsymbol{\\theta})$ of the steady-state expectation $$\\alpha(\\boldsymbol{\\theta}) = \\pi( \\boldsymbol{\\theta}) f.$$ \nTo this end, we first give sufficient conditions for the differentiability of $\\alpha(\\boldsymbol{\\theta})$ and for the calculation of its gradient via a sequence of finite horizon expectations. We then propose two different likelihood ratio estimators and analyze their limiting behavior.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/STSY.2018.0023","citationCount":"8","resultStr":"{\"title\":\"Likelihood Ratio Gradient Estimation for Steady-State Parameters\",\"authors\":\"P. Glynn, Mariana Olvera-Cravioto\",\"doi\":\"10.1287/STSY.2018.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a discrete-time Markov chain $\\\\boldsymbol{\\\\Phi}$ on a general state-space ${\\\\sf X}$, whose transition probabilities are parameterized by a real-valued vector $\\\\boldsymbol{\\\\theta}$. Under the assumption that $\\\\boldsymbol{\\\\Phi}$ is geometrically ergodic with corresponding stationary distribution $\\\\pi(\\\\boldsymbol{\\\\theta})$, we are interested in estimating the gradient $\\\\nabla \\\\alpha(\\\\boldsymbol{\\\\theta})$ of the steady-state expectation $$\\\\alpha(\\\\boldsymbol{\\\\theta}) = \\\\pi( \\\\boldsymbol{\\\\theta}) f.$$ \\nTo this end, we first give sufficient conditions for the differentiability of $\\\\alpha(\\\\boldsymbol{\\\\theta})$ and for the calculation of its gradient via a sequence of finite horizon expectations. We then propose two different likelihood ratio estimators and analyze their limiting behavior.\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1287/STSY.2018.0023\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/STSY.2018.0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/STSY.2018.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑一般状态空间${\sf X}$上的离散时间马尔可夫链$\boldsymbol{\Phi}$,其转移概率由实值向量$\boldsymbol{\theta}$参数化。在$\boldsymbol{\Phi}$与相应的平稳分布$\pi(\boldsymbol{theta},我们首先给出了$\alpha(\boldsymbol{theta})$的可微性以及通过有限的视界期望序列计算其梯度的充分条件。然后,我们提出了两种不同的似然比估计,并分析了它们的极限行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Likelihood Ratio Gradient Estimation for Steady-State Parameters
We consider a discrete-time Markov chain $\boldsymbol{\Phi}$ on a general state-space ${\sf X}$, whose transition probabilities are parameterized by a real-valued vector $\boldsymbol{\theta}$. Under the assumption that $\boldsymbol{\Phi}$ is geometrically ergodic with corresponding stationary distribution $\pi(\boldsymbol{\theta})$, we are interested in estimating the gradient $\nabla \alpha(\boldsymbol{\theta})$ of the steady-state expectation $$\alpha(\boldsymbol{\theta}) = \pi( \boldsymbol{\theta}) f.$$ To this end, we first give sufficient conditions for the differentiability of $\alpha(\boldsymbol{\theta})$ and for the calculation of its gradient via a sequence of finite horizon expectations. We then propose two different likelihood ratio estimators and analyze their limiting behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
期刊最新文献
Sharp Waiting-Time Bounds for Multiserver Jobs Asymptotic Optimality of Switched Control Policies in a Simple Parallel Server System Under an Extended Heavy Traffic Condition Distributionally Robust Observable Strategic Queues The BAR Approach for Multiclass Queueing Networks with SBP Service Policies Ergodic Control of Bipartite Matching Queues with Class Change and Matching Failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1