Anusha Dravid, Amy McCaughey-Chapman, B. Raos, S. O'Carroll, B. Connor, D. Svirskis
{"title":"用于挤出生物打印和细胞封装的琼脂糖-明胶生物墨水的开发","authors":"Anusha Dravid, Amy McCaughey-Chapman, B. Raos, S. O'Carroll, B. Connor, D. Svirskis","doi":"10.1088/1748-605X/ac759f","DOIUrl":null,"url":null,"abstract":"Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose–gelatin (AG–Gel) hydrogel blends as a bioink for extrusion-based bioprinting. Four different AG–Gel hydrogel blend formulations with varying gelatin concentration were systematically characterised to evaluate suitability as a potential bioink for extrusion-based bioprinting. Additionally, autoclave and filter sterilisation methods were compared to evaluate their effect on bioink properties. Finally, the ability of the AG–Gel bioink to support cell viability and culture after printing was evaluated using SH-SY5Y cells encapsulated in bioprinted droplets of the AG–Gel. All bioink formulations demonstrate rheological, mechanical and swelling properties suitable for bioprinting and cell encapsulation. Autoclave sterilisation significantly affected the rheological properties of the AG–Gel bioinks compared to filter sterilisation. SH-SY5Y cells printed and differentiated into neuronal-like cells using the developed AG–Gel bioinks demonstrated high viability (>90%) after 23 d in culture. This study demonstrates the properties of AG–Gel as a printable and biocompatible material applicable for use as a bioink.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Development of agarose–gelatin bioinks for extrusion-based bioprinting and cell encapsulation\",\"authors\":\"Anusha Dravid, Amy McCaughey-Chapman, B. Raos, S. O'Carroll, B. Connor, D. Svirskis\",\"doi\":\"10.1088/1748-605X/ac759f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose–gelatin (AG–Gel) hydrogel blends as a bioink for extrusion-based bioprinting. Four different AG–Gel hydrogel blend formulations with varying gelatin concentration were systematically characterised to evaluate suitability as a potential bioink for extrusion-based bioprinting. Additionally, autoclave and filter sterilisation methods were compared to evaluate their effect on bioink properties. Finally, the ability of the AG–Gel bioink to support cell viability and culture after printing was evaluated using SH-SY5Y cells encapsulated in bioprinted droplets of the AG–Gel. All bioink formulations demonstrate rheological, mechanical and swelling properties suitable for bioprinting and cell encapsulation. Autoclave sterilisation significantly affected the rheological properties of the AG–Gel bioinks compared to filter sterilisation. SH-SY5Y cells printed and differentiated into neuronal-like cells using the developed AG–Gel bioinks demonstrated high viability (>90%) after 23 d in culture. This study demonstrates the properties of AG–Gel as a printable and biocompatible material applicable for use as a bioink.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ac759f\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac759f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Development of agarose–gelatin bioinks for extrusion-based bioprinting and cell encapsulation
Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose–gelatin (AG–Gel) hydrogel blends as a bioink for extrusion-based bioprinting. Four different AG–Gel hydrogel blend formulations with varying gelatin concentration were systematically characterised to evaluate suitability as a potential bioink for extrusion-based bioprinting. Additionally, autoclave and filter sterilisation methods were compared to evaluate their effect on bioink properties. Finally, the ability of the AG–Gel bioink to support cell viability and culture after printing was evaluated using SH-SY5Y cells encapsulated in bioprinted droplets of the AG–Gel. All bioink formulations demonstrate rheological, mechanical and swelling properties suitable for bioprinting and cell encapsulation. Autoclave sterilisation significantly affected the rheological properties of the AG–Gel bioinks compared to filter sterilisation. SH-SY5Y cells printed and differentiated into neuronal-like cells using the developed AG–Gel bioinks demonstrated high viability (>90%) after 23 d in culture. This study demonstrates the properties of AG–Gel as a printable and biocompatible material applicable for use as a bioink.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters