{"title":"实验室规模的刀刃切割过程中纸张灰尘形成的实验研究","authors":"Johannes Lunewski, E. Schmidt","doi":"10.1515/npprj-2022-0070","DOIUrl":null,"url":null,"abstract":"Abstract Especially in the field of paper and print post-processing on an industrial scale, continuous cutting operations generate paper dust. Despite preventive measures like dedusting units, a high paper web velocity induces the release of particulate dust. As a result, the particles settle and accumulate on machine components and in the surrounding area. Resuspended particles around a potential ignition source represent a fire hazard. The prevention of such fire incidents requires frequent servicing and maintenance. However, the shutdown time on industrial scale applications remains cost-intensive. In this research, a cutting plotter executes reproducible knife edge cutting sequences to identify significant parameters affecting the paper dust formation on a macro and micro scale. For this purpose, an extraction system collects the exposed particles along the cutting line. The applied methods include gravimetric determination of the dust mass and dynamic image analysis to characterise particle size and shape. Final results indicate a significant influence of the blade wear condition.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":"38 1","pages":"59 - 72"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation into paper dust formation during knife edge cutting on a laboratory scale\",\"authors\":\"Johannes Lunewski, E. Schmidt\",\"doi\":\"10.1515/npprj-2022-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Especially in the field of paper and print post-processing on an industrial scale, continuous cutting operations generate paper dust. Despite preventive measures like dedusting units, a high paper web velocity induces the release of particulate dust. As a result, the particles settle and accumulate on machine components and in the surrounding area. Resuspended particles around a potential ignition source represent a fire hazard. The prevention of such fire incidents requires frequent servicing and maintenance. However, the shutdown time on industrial scale applications remains cost-intensive. In this research, a cutting plotter executes reproducible knife edge cutting sequences to identify significant parameters affecting the paper dust formation on a macro and micro scale. For this purpose, an extraction system collects the exposed particles along the cutting line. The applied methods include gravimetric determination of the dust mass and dynamic image analysis to characterise particle size and shape. Final results indicate a significant influence of the blade wear condition.\",\"PeriodicalId\":19315,\"journal\":{\"name\":\"Nordic Pulp & Paper Research Journal\",\"volume\":\"38 1\",\"pages\":\"59 - 72\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nordic Pulp & Paper Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/npprj-2022-0070\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2022-0070","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Experimental investigation into paper dust formation during knife edge cutting on a laboratory scale
Abstract Especially in the field of paper and print post-processing on an industrial scale, continuous cutting operations generate paper dust. Despite preventive measures like dedusting units, a high paper web velocity induces the release of particulate dust. As a result, the particles settle and accumulate on machine components and in the surrounding area. Resuspended particles around a potential ignition source represent a fire hazard. The prevention of such fire incidents requires frequent servicing and maintenance. However, the shutdown time on industrial scale applications remains cost-intensive. In this research, a cutting plotter executes reproducible knife edge cutting sequences to identify significant parameters affecting the paper dust formation on a macro and micro scale. For this purpose, an extraction system collects the exposed particles along the cutting line. The applied methods include gravimetric determination of the dust mass and dynamic image analysis to characterise particle size and shape. Final results indicate a significant influence of the blade wear condition.
期刊介绍:
Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass:
Pulp and paper: products and processes
Wood constituents: characterization and nanotechnologies
Bio-refining, recovery and energy issues
Utilization of side-streams from pulping processes
Novel fibre-based, sustainable and smart materials.
The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
Topics
Cutting-edge topics such as, but not limited to, the following:
Biorefining, energy issues
Wood fibre characterization and nanotechnology
Side-streams and new products from wood pulping processes
Mechanical pulping
Chemical pulping, recovery and bleaching
Paper technology
Paper chemistry and physics
Coating
Paper-ink-interactions
Recycling
Environmental issues.