K. Stephens, Anastazja Harris, Amanda Lee Hughes, Caroline Montagnolo, Karim Nader, S. A. Stevens, Tara Tasuji, Y. Xu, Hemant Purohit, C. Zobel
{"title":"持续灾难中的人工智能团队:训练和反馈脚本如何揭示这是一种人机交流形式","authors":"K. Stephens, Anastazja Harris, Amanda Lee Hughes, Caroline Montagnolo, Karim Nader, S. A. Stevens, Tara Tasuji, Y. Xu, Hemant Purohit, C. Zobel","doi":"10.30658/hmc.6.5","DOIUrl":null,"url":null,"abstract":"Humans play an integral role in identifying important information from social media during disasters. While human annotation of social media data to train machine learning models is often viewed as human-computer interaction, this study interrogates the ontological boundary between such interaction and human-machine communication. We conducted multiple interviews with participants who both labeled data to train machine learning models and corrected machine-inferred data labels. Findings reveal three themes: scripts invoked to manage decision-making, contextual scripts, and scripts around perceptions of machines. Humans use scripts around training the machine—a form of behavioral anthropomorphism—to develop social relationships with them. Correcting machine-inferred data labels changes these scripts and evokes self-doubt around who is right, which substantiates the argument that this is a form of human-machine communication.","PeriodicalId":34860,"journal":{"name":"HumanMachine Communication Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-AI Teaming During an Ongoing Disaster: How Scripts Around Training and Feedback Reveal this is a Form of Human-Machine Communication\",\"authors\":\"K. Stephens, Anastazja Harris, Amanda Lee Hughes, Caroline Montagnolo, Karim Nader, S. A. Stevens, Tara Tasuji, Y. Xu, Hemant Purohit, C. Zobel\",\"doi\":\"10.30658/hmc.6.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans play an integral role in identifying important information from social media during disasters. While human annotation of social media data to train machine learning models is often viewed as human-computer interaction, this study interrogates the ontological boundary between such interaction and human-machine communication. We conducted multiple interviews with participants who both labeled data to train machine learning models and corrected machine-inferred data labels. Findings reveal three themes: scripts invoked to manage decision-making, contextual scripts, and scripts around perceptions of machines. Humans use scripts around training the machine—a form of behavioral anthropomorphism—to develop social relationships with them. Correcting machine-inferred data labels changes these scripts and evokes self-doubt around who is right, which substantiates the argument that this is a form of human-machine communication.\",\"PeriodicalId\":34860,\"journal\":{\"name\":\"HumanMachine Communication Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HumanMachine Communication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30658/hmc.6.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HumanMachine Communication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30658/hmc.6.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Human-AI Teaming During an Ongoing Disaster: How Scripts Around Training and Feedback Reveal this is a Form of Human-Machine Communication
Humans play an integral role in identifying important information from social media during disasters. While human annotation of social media data to train machine learning models is often viewed as human-computer interaction, this study interrogates the ontological boundary between such interaction and human-machine communication. We conducted multiple interviews with participants who both labeled data to train machine learning models and corrected machine-inferred data labels. Findings reveal three themes: scripts invoked to manage decision-making, contextual scripts, and scripts around perceptions of machines. Humans use scripts around training the machine—a form of behavioral anthropomorphism—to develop social relationships with them. Correcting machine-inferred data labels changes these scripts and evokes self-doubt around who is right, which substantiates the argument that this is a form of human-machine communication.