Ariel Mordetzki, Efrain Buksman, A. L. Fonseca de Oliveira
{"title":"量子HHL算法在电路和线路传输波中的应用","authors":"Ariel Mordetzki, Efrain Buksman, A. L. Fonseca de Oliveira","doi":"10.31349/revmexfise.20.020206","DOIUrl":null,"url":null,"abstract":"The HHL quantum algorithm [1] is a procedure that addresses the resolution of linear systems of equations (QLSP). Under certain conditions, the algorithm has a logarithmic order in the number of equations, better than the faster classical method. The algorithm manages to find a quantum state proportional to the solution vector, up to a normalization factor. The disadvantage is that to determine each of the coefficients of the solution vector, the algorithm’s output quantum state must be determined with additional statistical methods, thus losing its exponential advantage. There are certain types of problems in which this disadvantage can be circumvented, the statistical treatment is unavoidable, but for certain cases such as electrical circuits, in which the main interest is to find only one of the currents, (for example the load current), we only need to measure one of the qubits of the solution state. In this article we solve the linear system associated with the currents of an electrical circuit with sinusoidal voltage, using the HHL algorithm, simulated in a Scilab numerical environment. An optimized example of an electrical line transmission wave in a real computer on the IBMQ platform, is also solved","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum HHL algorithm applied to electric circuit and line transmission wave\",\"authors\":\"Ariel Mordetzki, Efrain Buksman, A. L. Fonseca de Oliveira\",\"doi\":\"10.31349/revmexfise.20.020206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The HHL quantum algorithm [1] is a procedure that addresses the resolution of linear systems of equations (QLSP). Under certain conditions, the algorithm has a logarithmic order in the number of equations, better than the faster classical method. The algorithm manages to find a quantum state proportional to the solution vector, up to a normalization factor. The disadvantage is that to determine each of the coefficients of the solution vector, the algorithm’s output quantum state must be determined with additional statistical methods, thus losing its exponential advantage. There are certain types of problems in which this disadvantage can be circumvented, the statistical treatment is unavoidable, but for certain cases such as electrical circuits, in which the main interest is to find only one of the currents, (for example the load current), we only need to measure one of the qubits of the solution state. In this article we solve the linear system associated with the currents of an electrical circuit with sinusoidal voltage, using the HHL algorithm, simulated in a Scilab numerical environment. An optimized example of an electrical line transmission wave in a real computer on the IBMQ platform, is also solved\",\"PeriodicalId\":49600,\"journal\":{\"name\":\"Revista Mexicana De Fisica E\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica E\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfise.20.020206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica E","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfise.20.020206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
Quantum HHL algorithm applied to electric circuit and line transmission wave
The HHL quantum algorithm [1] is a procedure that addresses the resolution of linear systems of equations (QLSP). Under certain conditions, the algorithm has a logarithmic order in the number of equations, better than the faster classical method. The algorithm manages to find a quantum state proportional to the solution vector, up to a normalization factor. The disadvantage is that to determine each of the coefficients of the solution vector, the algorithm’s output quantum state must be determined with additional statistical methods, thus losing its exponential advantage. There are certain types of problems in which this disadvantage can be circumvented, the statistical treatment is unavoidable, but for certain cases such as electrical circuits, in which the main interest is to find only one of the currents, (for example the load current), we only need to measure one of the qubits of the solution state. In this article we solve the linear system associated with the currents of an electrical circuit with sinusoidal voltage, using the HHL algorithm, simulated in a Scilab numerical environment. An optimized example of an electrical line transmission wave in a real computer on the IBMQ platform, is also solved
期刊介绍:
The Revista Mexicana de Física (Rev. Mex. Fis.) publishes original papers of interest to our readers from the physical science com unity. Language may be English or Spanish, however, given the nature of our readers, English is recommended. Articles are classified as follows:
Research. Articles reporting original results in physical science.
Instrumentation. Articles reporting original contributions on design and construction of scientific instruments. They should present new instruments and techniques oriented to physical science problems solutions. They must also report measurements performed with the described instrument.
Reviews. Critical surveys of specific physical science topics in which recent published information is analyzed and discussed. They should be accessible to physics graduate students and non specialists, and provide valuable bibliography to the specialist.
Comments. Short papers (four pages maximum) that assess critically papers by others authors previously published in the Revista Mexicana de Física. A comment should state clearly to which paper it refers.