首页 > 最新文献

Revista Mexicana De Fisica E最新文献

英文 中文
Image charges from boundary value problems 边值问题的图像电荷
Q4 Social Sciences Pub Date : 2023-07-24 DOI: 10.31349/revmexfis.20.020213
G. F. Torres del Castillo
The examples usually solved by means of the method of images are revisited solving directly the Laplace equation. We also give a simple derivation of the axially symmetric solutions of the Laplace equation in spherical coordinates and of the translationally symmetric solutions of the Laplace equation in cylindrical coordinates.
通常用图像法求解的例子,重新考虑直接求解拉普拉斯方程。我们还给出了拉普拉斯方程在球坐标系中的轴对称解和拉普拉斯方程在柱坐标系中平移对称解的简单推导。
{"title":"Image charges from boundary value problems","authors":"G. F. Torres del Castillo","doi":"10.31349/revmexfis.20.020213","DOIUrl":"https://doi.org/10.31349/revmexfis.20.020213","url":null,"abstract":"The examples usually solved by means of the method of images are revisited solving directly the Laplace equation. We also give a simple derivation of the axially symmetric solutions of the Laplace equation in spherical coordinates and of the translationally symmetric solutions of the Laplace equation in cylindrical coordinates.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46067912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of understanding of physics concepts through problem solving units review in free fall motion materials 通过自由落体运动材料的问题解决单元复习,分析对物理概念的理解
Q4 Social Sciences Pub Date : 2023-06-28 DOI: 10.31349/revmexfise.20.020205
P. Winingsih, H. Kuswanto, Handoyo Saputro, Sony Yunior Erlangga, Aditya Yoga Purnama, Rio Sebastian, Shinta Silvia, J. Purwanto
The purpose of this research is to understand the physics education concepts through solving unit review problems in free fall topic. This research is a quantitative descriptive study involving 19 students of Physics Education at the University of Tamansiswa. The test instrument consists of 2 essay questions that refer to problem-solving indicators. The results of the study obtained several findings. Analysis of understanding the concepts of physics education students through solving unit review problems in free fall topic had the highest percentage in the medium category. On the problem solving indicators Physics Approach, Specific Application of Physics, and Logical Progression students’ abilities are in the low category.
本研究旨在透过解决自由落体主题的单元复习问题,了解物理教育的概念。本研究是一项定量描述性研究,涉及19名塔曼西瓦大学物理教育专业的学生。测试工具包括2个论述题,涉及解决问题的指标。这项研究的结果得出了几个结论。通过解决自由落体主题单元复习题来理解物理教育学生概念的分析在中等类别中所占比例最高。在物理方法、物理具体应用和逻辑进阶的问题解决指标上,学生的能力处于低水平。
{"title":"Analysis of understanding of physics concepts through problem solving units review in free fall motion materials","authors":"P. Winingsih, H. Kuswanto, Handoyo Saputro, Sony Yunior Erlangga, Aditya Yoga Purnama, Rio Sebastian, Shinta Silvia, J. Purwanto","doi":"10.31349/revmexfise.20.020205","DOIUrl":"https://doi.org/10.31349/revmexfise.20.020205","url":null,"abstract":"The purpose of this research is to understand the physics education concepts through solving unit review problems in free fall topic. This research is a quantitative descriptive study involving 19 students of Physics Education at the University of Tamansiswa. The test instrument consists of 2 essay questions that refer to problem-solving indicators. The results of the study obtained several findings. Analysis of understanding the concepts of physics education students through solving unit review problems in free fall topic had the highest percentage in the medium category. On the problem solving indicators Physics Approach, Specific Application of Physics, and Logical Progression students’ abilities are in the low category.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43671897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The problem of the body rotating on a frictionless table, attached to a hanging body, solved partially by conservation theorems 物体在无摩擦台上旋转的问题,附在悬挂物体上,用守恒定理部分求解
Q4 Social Sciences Pub Date : 2023-06-28 DOI: 10.31349/revmexfise.20.020204
J. Palacios Gomez, A. S. De Ita De la Torre
Conservation theorems of Mechanics, have been applied to the problem consisting of a body rotating on a frictionless table, attached to a hanging body, as an illustrative example for students of Physics with no knowledge of sophisticated mathematical methods, how to obtain a description of the physical behavior of a system, when obtaining the equation of motion requires those complicated methods. Applying the conservation of angular momentum it is shown that the angular frequency increases inversely to the square of the radius of motion; then the radius  is found at which the centripetal force and the tension of the string compensate each other; then, applying the conservation of energy, turning points are found. At the end, following scenery is obtained: the radial component of motion of the rotating body takes place between two turning points, namely a maximum at  given by the initial conditions, and a minimum at . With the help of these equations, obtained without the need of solving differential equations, it is possible to obtain a semi quantitative physical behavior of this particular system.
力学的守恒定理已经应用于由一个物体在无摩擦台上旋转组成的问题,该物体附着在一个悬挂的物体上,作为一个不了解复杂数学方法的物理学学生的例证,如何获得系统物理行为的描述,当获得运动方程需要那些复杂的方法时。应用角动量守恒,表明角频率的增加与运动半径的平方成反比;然后找到向心力和弦张力相互补偿的半径;然后,应用能量守恒,找到了转折点。最后,得到了以下景象:旋转体运动的径向分量发生在两个转折点之间,即初始条件给定的最大值和最小值。借助于这些无需求解微分方程即可获得的方程,可以获得该特定系统的半定量物理行为。
{"title":"The problem of the body rotating on a frictionless table, attached to a hanging body, solved partially by conservation theorems","authors":"J. Palacios Gomez, A. S. De Ita De la Torre","doi":"10.31349/revmexfise.20.020204","DOIUrl":"https://doi.org/10.31349/revmexfise.20.020204","url":null,"abstract":"Conservation theorems of Mechanics, have been applied to the problem consisting of a body rotating on a frictionless table, attached to a hanging body, as an illustrative example for students of Physics with no knowledge of sophisticated mathematical methods, how to obtain a description of the physical behavior of a system, when obtaining the equation of motion requires those complicated methods. Applying the conservation of angular momentum it is shown that the angular frequency increases inversely to the square of the radius of motion; then the radius  is found at which the centripetal force and the tension of the string compensate each other; then, applying the conservation of energy, turning points are found. At the end, following scenery is obtained: the radial component of motion of the rotating body takes place between two turning points, namely a maximum at  given by the initial conditions, and a minimum at . With the help of these equations, obtained without the need of solving differential equations, it is possible to obtain a semi quantitative physical behavior of this particular system.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43584715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera SunSpotCalc:一个基于Web和Python的计算太阳及其光球微分自转的应用程序
Q4 Social Sciences Pub Date : 2023-06-28 DOI: 10.31349/revmexfis.20.020208
David Sierra Porta, D. D. Herrera Acevedo, M. Tarazona-Alvarado, Y. Hernández Díaz
En este manuscrito presentamos una aplicación web con soporte en lenguaje de programación Python ReactJS y JavaScript, libre y abierta, para el desarrollo de una actividad de enseñanza-aprendizaje de la astronomía, específicamente para el cálculo de la rotación diferencial del Sol para estudiantes y público en general en edad escolar entre 10 y 18 años. El propósito fundamental es la de difundir el conocimiento del Sol y algunas de sus propiedades. La aplicación web es autocontenida y con suficiente guía y ayuda para que cualquiera pueda usarla, además de su dinamismo y diseño innovador, pretende presentar estrategias agradables para la enseñanza y aprendizaje de la ciencia en torno al Sol.
在这手稿介绍支持web应用程序编程语言Python ReactJS和JavaScript,自由和公开的活动,发展enseñanza-aprendizaje天文,专为太阳旋转微分计算学龄学生和公众在10岁至18岁。主要目的是传播关于太阳及其一些特性的知识。该web应用程序是自包含的,有足够的指导和帮助,任何人都可以使用它,除了它的活力和创新的设计,旨在呈现令人愉快的策略,教和学习围绕太阳的科学。
{"title":"SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera","authors":"David Sierra Porta, D. D. Herrera Acevedo, M. Tarazona-Alvarado, Y. Hernández Díaz","doi":"10.31349/revmexfis.20.020208","DOIUrl":"https://doi.org/10.31349/revmexfis.20.020208","url":null,"abstract":"En este manuscrito presentamos una aplicación web con soporte en lenguaje de programación Python ReactJS y JavaScript, libre y abierta, para el desarrollo de una actividad de enseñanza-aprendizaje de la astronomía, específicamente para el cálculo de la rotación diferencial del Sol para estudiantes y público en general en edad escolar entre 10 y 18 años. El propósito fundamental es la de difundir el conocimiento del Sol y algunas de sus propiedades. La aplicación web es autocontenida y con suficiente guía y ayuda para que cualquiera pueda usarla, además de su dinamismo y diseño innovador, pretende presentar estrategias agradables para la enseñanza y aprendizaje de la ciencia en torno al Sol.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47502984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle trajectory simulation using python and spreadsheet as an online learning alternative 粒子轨迹模拟使用python和电子表格作为在线学习替代方案
Q4 Social Sciences Pub Date : 2023-06-28 DOI: 10.31349/revmexfise.20.020202
Aditya Yoga Purnama, Ariswan, E. Istiyono, H. Putranta, S. A. Rani, A. Wijayanti, Ragil Saputri
Education today is required to utilize technological knowledge and skills in preparation for global competition. Along with the rapid development of technology, educators are required to develop learning alternatives. The purpose of this research is to create a particle trajectory simulation that is used as an alternative to online learning. The simulation uses Python programming language and Origin Pro assisted spreadsheet. Simulation in Python programming uses the Euler Cromer method to describe particle trajectories affected by electric and magnetic fields. This paper has successfully simulated particle trajectories affected by electric and magnetic fields with the Python programming language and Spreadsheet. The case where the motion of a charged particle is affected by a combination of electric and magnetic fields is when a positively charged particle moves perpendicular to the magnetic field, it will form a helical trajectory. However, when the electric field is in the direction of the magnetic field, the motion in the direction of the magnetic field will be accelerated by the electric force in the direction of the magnetic field which causes the helix to increase in width.
当今的教育需要利用技术知识和技能为全球竞争做准备。随着技术的快速发展,教育工作者需要开发替代学习方法。这项研究的目的是创建一个粒子轨迹模拟,作为在线学习的替代方案。模拟使用Python编程语言和Origin Pro辅助的电子表格。Python编程中的模拟使用Euler-Cromer方法来描述受电场和磁场影响的粒子轨迹。本文用Python编程语言和电子表格成功地模拟了受电场和磁场影响的粒子轨迹。带电粒子的运动受到电场和磁场组合的影响的情况是,当带正电的粒子垂直于磁场移动时,它将形成螺旋轨迹。然而,当电场在磁场的方向上时,磁场方向上的运动将被磁场方向上导致螺旋宽度增加的电力加速。
{"title":"Particle trajectory simulation using python and spreadsheet as an online learning alternative","authors":"Aditya Yoga Purnama, Ariswan, E. Istiyono, H. Putranta, S. A. Rani, A. Wijayanti, Ragil Saputri","doi":"10.31349/revmexfise.20.020202","DOIUrl":"https://doi.org/10.31349/revmexfise.20.020202","url":null,"abstract":"Education today is required to utilize technological knowledge and skills in preparation for global competition. Along with the rapid development of technology, educators are required to develop learning alternatives. The purpose of this research is to create a particle trajectory simulation that is used as an alternative to online learning. The simulation uses Python programming language and Origin Pro assisted spreadsheet. Simulation in Python programming uses the Euler Cromer method to describe particle trajectories affected by electric and magnetic fields. This paper has successfully simulated particle trajectories affected by electric and magnetic fields with the Python programming language and Spreadsheet. The case where the motion of a charged particle is affected by a combination of electric and magnetic fields is when a positively charged particle moves perpendicular to the magnetic field, it will form a helical trajectory. However, when the electric field is in the direction of the magnetic field, the motion in the direction of the magnetic field will be accelerated by the electric force in the direction of the magnetic field which causes the helix to increase in width.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44756578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cadenas de Markov para seguimiento de reacciones quı́micas. 用于监测化学反应的马尔可夫链。
Q4 Social Sciences Pub Date : 2023-06-28 DOI: 10.31349/revmexfise.20.020210
Ana Lisette Flores Robles, Liliana Peralta Hernández, Victor Manuel Trejos Montoya
La  cinética quı́mica estudia las reacciones quı́micas y sus mecanismos de reacción. Estos mecanismos se entienden como una secuencia de pasos elementales  para llevar a cabo la reacción química. En el presente trabajo se utiliza un modelo de cadenas de Markov aplicado al modelado de reacciones quı́micas tales como: reacciones de primer y segundo orden, reacciones competitivas-paralelas, reacciones consecutivas o en serie y reacciones competitivas-consecutivas. Adicionalmente, se incluye una comparación de las soluciones analı́ticas y numéricas de cada una de las reacciones de interés. En todos los casos se observa una buena concordancia entre los resultados empleando cadenas de Markov, la solución numérica y la solución analı́tica.
化学动力学研究化学反应及其反应机制。这些机制被理解为进行化学反应的一系列基本步骤。本文使用马尔可夫链模型对化学反应进行建模,如:一级和二级反应、竞争-平行反应、连续或串联反应以及竞争-连续反应。此外,还包括对每个感兴趣反应的分析和数值解的比较。在所有情况下,使用马尔可夫链、数值解和分析解的结果之间都有很好的一致性。
{"title":"Cadenas de Markov para seguimiento de reacciones quı́micas.","authors":"Ana Lisette Flores Robles, Liliana Peralta Hernández, Victor Manuel Trejos Montoya","doi":"10.31349/revmexfise.20.020210","DOIUrl":"https://doi.org/10.31349/revmexfise.20.020210","url":null,"abstract":"La  cinética quı́mica estudia las reacciones quı́micas y sus mecanismos de reacción. Estos mecanismos se entienden como una secuencia de pasos elementales  para llevar a cabo la reacción química. En el presente trabajo se utiliza un modelo de cadenas de Markov aplicado al modelado de reacciones quı́micas tales como: reacciones de primer y segundo orden, reacciones competitivas-paralelas, reacciones consecutivas o en serie y reacciones competitivas-consecutivas. Adicionalmente, se incluye una comparación de las soluciones analı́ticas y numéricas de cada una de las reacciones de interés. En todos los casos se observa una buena concordancia entre los resultados empleando cadenas de Markov, la solución numérica y la solución analı́tica.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45965510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting Max Planck’s idea: Planck’s Law, Casimir force and Planck’s constant 对普朗克思想的再认识:普朗克定律、卡西米尔力和普朗克常数
Q4 Social Sciences Pub Date : 2023-06-28 DOI: 10.31349/revmexfise.20.020203
Rafael Quintero‐Bermudez, M. A. Quiroz-Juárez, Jorge Luis Dominguez-Juárez, Rafael Quintero Torres
Max Planck (1858-1947) is one of the most renowned scientists in physics. He is even a commonplace character in humanities courses since he was one of the European scientists who most influenced the opinion and perspective of European society. This work intends to present a pedagogical introduction to the quantization of energy, Planck's most valuable contribution to science. This is an important topic that is frequently included in physics and engineering curricula but is often presented in a vague and forced manner. This work seeks a more intuitive introduction to the quantization of energy by presenting Planck's law and the Casimir force, along with a practical activity that students can perform to directly measure Planck's constant and achieve a more cohesive understanding of the concepts
马克斯·普朗克(1858-1947)是最著名的物理学家之一。他是对欧洲社会的观点和观点影响最大的欧洲科学家之一,甚至在人文学科课程中也是一个司空见惯的人物。这项工作旨在介绍普朗克对科学最有价值的贡献——能量量子化的教学介绍。这是一个重要的话题,经常包括在物理和工程课程,但往往是在一个模糊和强迫的方式提出。这项工作旨在通过提出普朗克定律和卡西米尔力,以及学生可以直接测量普朗克常数并实现对概念更有凝聚力的理解的实践活动,更直观地介绍能量的量子化
{"title":"Revisiting Max Planck’s idea: Planck’s Law, Casimir force and Planck’s constant","authors":"Rafael Quintero‐Bermudez, M. A. Quiroz-Juárez, Jorge Luis Dominguez-Juárez, Rafael Quintero Torres","doi":"10.31349/revmexfise.20.020203","DOIUrl":"https://doi.org/10.31349/revmexfise.20.020203","url":null,"abstract":"Max Planck (1858-1947) is one of the most renowned scientists in physics. He is even a commonplace character in humanities courses since he was one of the European scientists who most influenced the opinion and perspective of European society. This work intends to present a pedagogical introduction to the quantization of energy, Planck's most valuable contribution to science. This is an important topic that is frequently included in physics and engineering curricula but is often presented in a vague and forced manner. This work seeks a more intuitive introduction to the quantization of energy by presenting Planck's law and the Casimir force, along with a practical activity that students can perform to directly measure Planck's constant and achieve a more cohesive understanding of the concepts","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44182698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The relativistic connection between harmonic bidimensional electrostatic and magnetostatic fields 二维谐波静电场与静磁场之间的相对论性联系
Q4 Social Sciences Pub Date : 2023-06-28 DOI: 10.31349/revmexfise.20.020207
Eugenio Ley Koo, Diego Mora de la Fuente, Joshua Cornejo Gómez
The antecedent of this contribution is [1], which constructed the harmonic bidimensional expansions for the electrostatic and magnetostatic potentials, produced by a straight line with uniform charge and uniform current distributions, respectively, in Cartesian, and cylindrical circular, elliptic and parabolic coordinates. For the successive geometries, the sources are confined in the respective cylinders containing the source line, plus induced sources in two grounded flat, elliptical and parabolic plates; the potentials are continuous at the source cylinder and vanish at the grounded plates. In the electrostatic case, the electric intensity field is evaluated as the negative of the gradient of the potential; in the magnetostatic case, the magnetic induction field is the rotational of the axial potential. Both potential and force fields are bidimensional, and the equipotential surfaces and force fields are orthogonal. The normal components of the electric field at the source cylinder show a discontinuity, which according to Gauss’s law is a measure of the surface charge distribution; in contrast, the tangential components are continuous due to the conservative character of the electrostatic force. The normal components of the induction field are continuous due to its solenoidad character; its tangential components show a discontinuity which by Ampere’s law is a measure of the linear current intensity. Figures 1-4 illustrate the equipotentials on the left and electric field lines on the right; and the magnetic field lines on the left and the equipotentials on the right, exhibiting also their respective orthogonalities. The differences between the electric and magnetic multipoles are recognized, but we can still ask if there is a connection between them. The answer is given here in terms of the Lorentz transformations of the four-vector potentials and sources, and of the antisymmetric force field four-tensor.
这一贡献的前提是[1],它构造了静电势和静磁势的谐波二维展开式,分别由笛卡尔坐标系、圆柱圆坐标系、椭圆坐标系和抛物线坐标系中具有均匀电荷和均匀电流分布的直线产生。对于连续的几何形状,源被限制在包含源线的相应圆柱体中,加上两个接地的平板、椭圆板和抛物面中的感应源;电势在源圆柱体处是连续的并且在接地板处消失。在静电情况下,电场强度场被评估为电势梯度的负值;在静磁情况下,磁感应场是轴向电势的旋转。势场和力场都是二维的,等势面和力场是正交的。源圆柱体处电场的法向分量显示出不连续性,根据高斯定律,这是表面电荷分布的度量;相反,由于静电力的保守性,切向分量是连续的。感应场的正常分量由于其螺线管特性而是连续的;其切向分量显示出不连续性,根据安培定律,该不连续性是线性电流强度的度量。图1-4显示了左边的等电位和右边的电场线;左边的磁力线和右边的等势线也表现出它们各自的正交性。电多极和磁多极之间的差异是公认的,但我们仍然可以问它们之间是否存在联系。答案是根据四个矢量势和源的洛伦兹变换,以及反对称力场四张量的洛伦兹转换给出的。
{"title":"The relativistic connection between harmonic bidimensional electrostatic and magnetostatic fields","authors":"Eugenio Ley Koo, Diego Mora de la Fuente, Joshua Cornejo Gómez","doi":"10.31349/revmexfise.20.020207","DOIUrl":"https://doi.org/10.31349/revmexfise.20.020207","url":null,"abstract":"The antecedent of this contribution is [1], which constructed the harmonic bidimensional expansions for the electrostatic and magnetostatic potentials, produced by a straight line with uniform charge and uniform current distributions, respectively, in Cartesian, and cylindrical circular, elliptic and parabolic coordinates. For the successive geometries, the sources are confined in the respective cylinders containing the source line, plus induced sources in two grounded flat, elliptical and parabolic plates; the potentials are continuous at the source cylinder and vanish at the grounded plates. In the electrostatic case, the electric intensity field is evaluated as the negative of the gradient of the potential; in the magnetostatic case, the magnetic induction field is the rotational of the axial potential. Both potential and force fields are bidimensional, and the equipotential surfaces and force fields are orthogonal. The normal components of the electric field at the source cylinder show a discontinuity, which according to Gauss’s law is a measure of the surface charge distribution; in contrast, the tangential components are continuous due to the conservative character of the electrostatic force. The normal components of the induction field are continuous due to its solenoidad character; its tangential components show a discontinuity which by Ampere’s law is a measure of the linear current intensity. Figures 1-4 illustrate the equipotentials on the left and electric field lines on the right; and the magnetic field lines on the left and the equipotentials on the right, exhibiting also their respective orthogonalities. The differences between the electric and magnetic multipoles are recognized, but we can still ask if there is a connection between them. The answer is given here in terms of the Lorentz transformations of the four-vector potentials and sources, and of the antisymmetric force field four-tensor.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44493621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolviendo ecuaciones diferenciales ordinarias con Symbolic Math Toolbox™ (Matlab) y SymPy (Python) 用符号数学工具箱求解常微分方程™ (MATLAB)和Sympy(Python)
Q4 Social Sciences Pub Date : 2023-06-28 DOI: 10.31349/revmexfis.20.020209
Gerardo Ortigoza, Roberto Iñaki Ponce de la Cruz Herrera
This paper shows solutions of ordinary differential equations (EDOS) obtained by using two symbolic packages: Symbolic Math Toolbox™ (Matlab) and SymPy (Python). The basic instructions to obtain solutions of both packages are explained step by step, through a group of examples from a traditional ordinary differential equations course. Differential equations that are solved with methods such as: separable variables, linear equations, indeterminate coefficients, variation of parameters, power series, Laplace transform, and numerical solutions are included. By means of the symbolic computation carried out with these packages it is possible to obtain the solution of linear systems, as well as the visualization of the direction field of a differential equation or of a non-linear system of differential equations. The main contribution of this work consists in providing the reader with a practical guide that allows him to start the study of differential equations assisted by Symbolic Math Toolbox™ or SymPy. Among the benefits of using these computational tools in teaching and/or learning practices, it is shown how the use of symbolic or numerical computation saves us effort in the computation of tedious calculations; focusing attention on important ideas and concepts such as: the relationship between the mathematical model and its physical counterpart, asymptotic behavior and qualitative analysis of the solutions.
本文展示了使用两个符号包(Symbol-MathToolbox)获得的常微分方程(EDOS)的解™ (Matlab)和SymPy(Python)。通过一组传统常微分方程课程的例子,逐步解释了获得两个包的解的基本说明。包括用可分离变量、线性方程、不确定系数、参数变化、幂级数、拉普拉斯变换和数值解等方法求解的微分方程。通过用这些软件包进行的符号计算,可以获得线性系统的解,以及微分方程或非线性微分方程系统的方向场的可视化。这项工作的主要贡献在于为读者提供了一份实用指南,使他能够在符号数学工具箱的帮助下开始研究微分方程™ 或SymPy。在教学和/或学习实践中使用这些计算工具的好处之一是,它表明了符号或数值计算的使用如何节省我们在繁琐计算中的工作量;重点关注重要的思想和概念,如:数学模型与物理模型之间的关系,解的渐近行为和定性分析。
{"title":"Resolviendo ecuaciones diferenciales ordinarias con Symbolic Math Toolbox™ (Matlab) y SymPy (Python)","authors":"Gerardo Ortigoza, Roberto Iñaki Ponce de la Cruz Herrera","doi":"10.31349/revmexfis.20.020209","DOIUrl":"https://doi.org/10.31349/revmexfis.20.020209","url":null,"abstract":"This paper shows solutions of ordinary differential equations (EDOS) obtained by using two symbolic packages: Symbolic Math Toolbox™ (Matlab) and SymPy (Python). The basic instructions to obtain solutions of both packages are explained step by step, through a group of examples from a traditional ordinary differential equations course. Differential equations that are solved with methods such as: separable variables, linear equations, indeterminate coefficients, variation of parameters, power series, Laplace transform, and numerical solutions are included. By means of the symbolic computation carried out with these packages it is possible to obtain the solution of linear systems, as well as the visualization of the direction field of a differential equation or of a non-linear system of differential equations. The main contribution of this work consists in providing the reader with a practical guide that allows him to start the study of differential equations assisted by Symbolic Math Toolbox™ or SymPy. Among the benefits of using these computational tools in teaching and/or learning practices, it is shown how the use of symbolic or numerical computation saves us effort in the computation of tedious calculations; focusing attention on important ideas and concepts such as: the relationship between the mathematical model and its physical counterpart, asymptotic behavior and qualitative analysis of the solutions. \u0000","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46007283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to the Fourier transform studying the oscillations of a pendulum 傅里叶变换研究摆的振荡
Q4 Social Sciences Pub Date : 2023-06-28 DOI: 10.31349/revmexfise.20.020211
José Manuel Alvarado Reyes, Catalina Stern Forgach
Students of physics, engineering and related majors; generally, do not know the usefulness and applications of transforming a signal from the time domain to the frequency domain. The mathematics that makes possible this transformation is well known to senior students of the majors, but vaguely applied in teaching laboratories. The main phenomena that could provide us with frequency information, the pendulum and the spring, are minimized by focusing only on obtaining the mathematics dictated in books.  The pendulum is the most studied physical system in teaching laboratories from precollege up to college levels; this phenomenon is analyzed mathematically in most of the related literature in the area of Physics and Engineering. It is an introduction to the wave phenomenon. However, teaching paradigms, focus on the plain demonstration that periods are invariant to suspended masses, if and only if the oscillation is within angles not greater than 10 degrees from their normal. The use of technologies, computational and electronic, also focuses on the demonstration of such assertion. In the present work, a mechanical-electrical system was designed that allows to observe, in real time, on the screen of an oscilloscope, the swinging behavior of a pendulum. This system makes evident that the swing movement of a pendulum can be described by a sine function, but also with this same system, and with the help of a digital oscilloscope, it is possible to simultaneously observe the signal generated in the temporal domain and in the frequency domain. This innovation not just breaks the paradigms of teaching but also promotes an alternative to valuable observations promotes understanding.
物理、工程等相关专业的学生;一般来说,不知道将信号从时域变换到频域的有用性和应用。使这种转变成为可能的数学对于专业的高年级学生来说是众所周知的,但在教学实验室中却模糊地应用。主要的现象,可以提供给我们的频率信息,钟摆和弹簧,被最小化,只关注获得数学在书中口述。钟摆是从大学预科到大学阶段教学实验室中研究最多的物理系统;在物理和工程领域的大多数相关文献中,对这种现象进行了数学分析。这是对波动现象的介绍。然而,教学范例,集中在简单的演示周期是不变的悬挂质量,当且仅当振荡是在角度不大于10度从法线。计算机和电子技术的使用也着重于证明这种主张。在目前的工作中,设计了一个机电系统,可以在示波器的屏幕上实时观察钟摆的摆动行为。该系统表明,摆摆的摆动运动可以用正弦函数来描述,而且在这个系统中,借助于数字示波器,可以同时观察到时域和频域产生的信号。这种创新不仅打破了教学的范式,而且还促进了对有价值的观察的替代,促进了理解。
{"title":"Introduction to the Fourier transform studying the oscillations of a pendulum","authors":"José Manuel Alvarado Reyes, Catalina Stern Forgach","doi":"10.31349/revmexfise.20.020211","DOIUrl":"https://doi.org/10.31349/revmexfise.20.020211","url":null,"abstract":"Students of physics, engineering and related majors; generally, do not know the usefulness and applications of transforming a signal from the time domain to the frequency domain. The mathematics that makes possible this transformation is well known to senior students of the majors, but vaguely applied in teaching laboratories. The main phenomena that could provide us with frequency information, the pendulum and the spring, are minimized by focusing only on obtaining the mathematics dictated in books.  The pendulum is the most studied physical system in teaching laboratories from precollege up to college levels; this phenomenon is analyzed mathematically in most of the related literature in the area of Physics and Engineering. It is an introduction to the wave phenomenon. However, teaching paradigms, focus on the plain demonstration that periods are invariant to suspended masses, if and only if the oscillation is within angles not greater than 10 degrees from their normal. The use of technologies, computational and electronic, also focuses on the demonstration of such assertion. In the present work, a mechanical-electrical system was designed that allows to observe, in real time, on the screen of an oscilloscope, the swinging behavior of a pendulum. This system makes evident that the swing movement of a pendulum can be described by a sine function, but also with this same system, and with the help of a digital oscilloscope, it is possible to simultaneously observe the signal generated in the temporal domain and in the frequency domain. This innovation not just breaks the paradigms of teaching but also promotes an alternative to valuable observations promotes understanding.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47168230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Revista Mexicana De Fisica E
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1