基于云计算的新一代高阶可压缩流体动力学求解器的评估

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS Array Pub Date : 2023-03-01 DOI:10.1016/j.array.2022.100268
R. Al Jahdali , S. Kortas , M. Shaikh , L. Dalcin , M. Parsani
{"title":"基于云计算的新一代高阶可压缩流体动力学求解器的评估","authors":"R. Al Jahdali ,&nbsp;S. Kortas ,&nbsp;M. Shaikh ,&nbsp;L. Dalcin ,&nbsp;M. Parsani","doi":"10.1016/j.array.2022.100268","DOIUrl":null,"url":null,"abstract":"<div><p>Industrially relevant computational fluid dynamics simulations frequently require vast computational resources that are only available to governments, wealthy corporations, and wealthy institutions. Thus, in many contexts and realities, high-performance computing grids and cloud resources on demand should be evaluated as viable alternatives to conventional computing clusters. In this work, we present the analysis of the time-to-solution and cost of an entropy stable collocated discontinuous Galerkin (SSDC) compressible computational fluid dynamics framework on Ibex, the on-premises cluster at KAUST, and the Amazon Web Services Elastic Compute Cloud for complex compressible flows. SSDC is a prototype of the next generation computational fluid dynamics frameworks developed following the road map established by the NASA CFD vision 2030. We simulate complex flow problems using high-order accurate fully-discrete entropy stable algorithms. In terms of time-to-solution, the Amazon Elastic Compute Cloud delivers the best performance, with the Graviton2 processors based on the Arm architecture being the fastest. However, the results also indicate that the Ibex nodes based on the AMD Rome architecture deliver good performance, close to those observed for the Amazon Elastic Compute Cloud. Furthermore, we observed that computations performed on the Ibex on-premises cluster are currently less expensive than those performed in the cloud. Our findings could be used to develop guidelines for selecting high-performance computing cloud resources to simulate realistic fluid flow problems.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of next-generation high-order compressible fluid dynamic solver on cloud computing for complex industrial flows\",\"authors\":\"R. Al Jahdali ,&nbsp;S. Kortas ,&nbsp;M. Shaikh ,&nbsp;L. Dalcin ,&nbsp;M. Parsani\",\"doi\":\"10.1016/j.array.2022.100268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Industrially relevant computational fluid dynamics simulations frequently require vast computational resources that are only available to governments, wealthy corporations, and wealthy institutions. Thus, in many contexts and realities, high-performance computing grids and cloud resources on demand should be evaluated as viable alternatives to conventional computing clusters. In this work, we present the analysis of the time-to-solution and cost of an entropy stable collocated discontinuous Galerkin (SSDC) compressible computational fluid dynamics framework on Ibex, the on-premises cluster at KAUST, and the Amazon Web Services Elastic Compute Cloud for complex compressible flows. SSDC is a prototype of the next generation computational fluid dynamics frameworks developed following the road map established by the NASA CFD vision 2030. We simulate complex flow problems using high-order accurate fully-discrete entropy stable algorithms. In terms of time-to-solution, the Amazon Elastic Compute Cloud delivers the best performance, with the Graviton2 processors based on the Arm architecture being the fastest. However, the results also indicate that the Ibex nodes based on the AMD Rome architecture deliver good performance, close to those observed for the Amazon Elastic Compute Cloud. Furthermore, we observed that computations performed on the Ibex on-premises cluster are currently less expensive than those performed in the cloud. Our findings could be used to develop guidelines for selecting high-performance computing cloud resources to simulate realistic fluid flow problems.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005622001011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005622001011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

工业相关的计算流体动力学模拟经常需要大量的计算资源,而这些资源只有政府、富有的公司和富有的机构才能获得。因此,在许多环境和现实中,应将高性能计算网格和按需云资源作为传统计算集群的可行替代方案进行评估。在这项工作中,我们分析了Ibex上熵稳定并配不连续Galerkin (SSDC)可压缩计算流体动力学框架的求解时间和成本,KAUST的本地集群和Amazon Web Services弹性计算云用于复杂的可压缩流。SSDC是下一代计算流体动力学框架的原型,是根据NASA CFD愿景2030建立的路线图开发的。我们使用高阶精确的全离散熵稳定算法来模拟复杂的流动问题。在解决方案的时间方面,亚马逊弹性计算云提供了最好的性能,基于Arm架构的gravon2处理器是最快的。然而,结果也表明,基于AMD Rome架构的Ibex节点提供了良好的性能,接近亚马逊弹性计算云的性能。此外,我们观察到,在Ibex本地集群上执行的计算目前比在云中执行的计算更便宜。我们的研究结果可用于制定选择高性能计算云资源来模拟现实流体流动问题的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of next-generation high-order compressible fluid dynamic solver on cloud computing for complex industrial flows

Industrially relevant computational fluid dynamics simulations frequently require vast computational resources that are only available to governments, wealthy corporations, and wealthy institutions. Thus, in many contexts and realities, high-performance computing grids and cloud resources on demand should be evaluated as viable alternatives to conventional computing clusters. In this work, we present the analysis of the time-to-solution and cost of an entropy stable collocated discontinuous Galerkin (SSDC) compressible computational fluid dynamics framework on Ibex, the on-premises cluster at KAUST, and the Amazon Web Services Elastic Compute Cloud for complex compressible flows. SSDC is a prototype of the next generation computational fluid dynamics frameworks developed following the road map established by the NASA CFD vision 2030. We simulate complex flow problems using high-order accurate fully-discrete entropy stable algorithms. In terms of time-to-solution, the Amazon Elastic Compute Cloud delivers the best performance, with the Graviton2 processors based on the Arm architecture being the fastest. However, the results also indicate that the Ibex nodes based on the AMD Rome architecture deliver good performance, close to those observed for the Amazon Elastic Compute Cloud. Furthermore, we observed that computations performed on the Ibex on-premises cluster are currently less expensive than those performed in the cloud. Our findings could be used to develop guidelines for selecting high-performance computing cloud resources to simulate realistic fluid flow problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
期刊最新文献
DART: A Solution for decentralized federated learning model robustness analysis Autonomous UAV navigation using deep learning-based computer vision frameworks: A systematic literature review Threat intelligence named entity recognition techniques based on few-shot learning Reimagining otitis media diagnosis: A fusion of nested U-Net segmentation with graph theory-inspired feature set Modeling and supporting adaptive Complex Data-Intensive Web Systems via XML and the O-O paradigm: The OO-XAHM model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1