Mateus Medeiros dos Santos, J. Souza-Júnior, T. S. Castelo, J. P. Queiroz, L. L. M. Costa
{"title":"生存热:耐洛公牛对太阳辐射暴露的恢复力","authors":"Mateus Medeiros dos Santos, J. Souza-Júnior, T. S. Castelo, J. P. Queiroz, L. L. M. Costa","doi":"10.31893/jabb.23027","DOIUrl":null,"url":null,"abstract":"We aimed to assess the physiological and biophysical responses of Nellore bulls exposed to solar radiation in semiarid conditions throughout the day. Sixteen Nellore bulls were examined in Tibau city, Northeast Brazil (5°52ʹ South, 37°20ʹ West, and 37 m above sea level) over four nonconsecutive days, with data collection taking place at one-hour intervals between 7:00 am and 5:00 pm. Four animals were analyzed each day and kept exposed to the sun for the duration of the study. The average age of the animals was three years, and their average body weight was 650±32 kg. The meteorological station measured air temperature (°C), relative humidity (%), solar radiation (W.m-2), and black globe temperatures (°C) every minute, while a digital anemometer thermohygrometer measured wind speed (m.s-1) at the same time. Respiratory rate (breaths.min-1), expired air temperature (°C), rectal temperature (°C), and body surface temperature (°C) were measured as physiological variables. Biophysical equations were used to estimate the sensible and latent heat transfer mechanisms (W.m-2). The air temperature ranged from 28.5 to 32.5°C, and direct solar radiation was between 21 and 891 W.m-². Between 11:00 am and 1:00 pm, the study observed heat gain through longwave radiation, which reached an average of 250 W.m-2, with a significant increase (P < 0.05) in respiratory rate and body surface temperature during this time. Convection was significant in heat dissipation, particularly when the wind speed was increased from 11:00 am. However, latent heat loss mechanisms were more effective in losing excess body heat under total sun exposure, despite the positive effect of convection. The study findings showed that Nellore bulls maintained their body temperature within a narrow range even when exposed to high solar radiation, thus demonstrating the efficiency of physiological and biophysical mechanisms during times of greater thermal challenge.","PeriodicalId":37772,"journal":{"name":"Journal of Animal Behaviour and Biometeorology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surviving heat: Resilience of Nellore bulls to solar radiation exposure\",\"authors\":\"Mateus Medeiros dos Santos, J. Souza-Júnior, T. S. Castelo, J. P. Queiroz, L. L. M. Costa\",\"doi\":\"10.31893/jabb.23027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aimed to assess the physiological and biophysical responses of Nellore bulls exposed to solar radiation in semiarid conditions throughout the day. Sixteen Nellore bulls were examined in Tibau city, Northeast Brazil (5°52ʹ South, 37°20ʹ West, and 37 m above sea level) over four nonconsecutive days, with data collection taking place at one-hour intervals between 7:00 am and 5:00 pm. Four animals were analyzed each day and kept exposed to the sun for the duration of the study. The average age of the animals was three years, and their average body weight was 650±32 kg. The meteorological station measured air temperature (°C), relative humidity (%), solar radiation (W.m-2), and black globe temperatures (°C) every minute, while a digital anemometer thermohygrometer measured wind speed (m.s-1) at the same time. Respiratory rate (breaths.min-1), expired air temperature (°C), rectal temperature (°C), and body surface temperature (°C) were measured as physiological variables. Biophysical equations were used to estimate the sensible and latent heat transfer mechanisms (W.m-2). The air temperature ranged from 28.5 to 32.5°C, and direct solar radiation was between 21 and 891 W.m-². Between 11:00 am and 1:00 pm, the study observed heat gain through longwave radiation, which reached an average of 250 W.m-2, with a significant increase (P < 0.05) in respiratory rate and body surface temperature during this time. Convection was significant in heat dissipation, particularly when the wind speed was increased from 11:00 am. However, latent heat loss mechanisms were more effective in losing excess body heat under total sun exposure, despite the positive effect of convection. The study findings showed that Nellore bulls maintained their body temperature within a narrow range even when exposed to high solar radiation, thus demonstrating the efficiency of physiological and biophysical mechanisms during times of greater thermal challenge.\",\"PeriodicalId\":37772,\"journal\":{\"name\":\"Journal of Animal Behaviour and Biometeorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Behaviour and Biometeorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31893/jabb.23027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Behaviour and Biometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31893/jabb.23027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Surviving heat: Resilience of Nellore bulls to solar radiation exposure
We aimed to assess the physiological and biophysical responses of Nellore bulls exposed to solar radiation in semiarid conditions throughout the day. Sixteen Nellore bulls were examined in Tibau city, Northeast Brazil (5°52ʹ South, 37°20ʹ West, and 37 m above sea level) over four nonconsecutive days, with data collection taking place at one-hour intervals between 7:00 am and 5:00 pm. Four animals were analyzed each day and kept exposed to the sun for the duration of the study. The average age of the animals was three years, and their average body weight was 650±32 kg. The meteorological station measured air temperature (°C), relative humidity (%), solar radiation (W.m-2), and black globe temperatures (°C) every minute, while a digital anemometer thermohygrometer measured wind speed (m.s-1) at the same time. Respiratory rate (breaths.min-1), expired air temperature (°C), rectal temperature (°C), and body surface temperature (°C) were measured as physiological variables. Biophysical equations were used to estimate the sensible and latent heat transfer mechanisms (W.m-2). The air temperature ranged from 28.5 to 32.5°C, and direct solar radiation was between 21 and 891 W.m-². Between 11:00 am and 1:00 pm, the study observed heat gain through longwave radiation, which reached an average of 250 W.m-2, with a significant increase (P < 0.05) in respiratory rate and body surface temperature during this time. Convection was significant in heat dissipation, particularly when the wind speed was increased from 11:00 am. However, latent heat loss mechanisms were more effective in losing excess body heat under total sun exposure, despite the positive effect of convection. The study findings showed that Nellore bulls maintained their body temperature within a narrow range even when exposed to high solar radiation, thus demonstrating the efficiency of physiological and biophysical mechanisms during times of greater thermal challenge.
期刊介绍:
The Journal of Animal Behaviour and Biometeorology (ISSN 2318-1265) is the official journal of the Center for Applied Animal Biometeorology (Brazil) currently published by Malque Publishing. Our journal is published quarterly, where the published articles are inserted into areas of animal behaviour, animal biometeorology, animal welfare, and ambience: farm animals (mammals, birds, fish, and bees), wildlife (mammals, birds, fish, reptiles, and amphibians), pets, animals in zoos and invertebrate animals. The publication is exclusively digital and articles are freely available to the international community. Manuscript submission implies that the data are unpublished and have not been submitted for publication in other journals. JABB publishes original articles in the form of Original Articles, Short Communications, and Reviews. Original Articles arising from research work should be well grounded in theory and execution should follow the scientific methodology and justification for its objectives; Short Communications should provide sufficient results for a publication in accordance with the Research Article; Reviews should involve the relevant scientific literature on the subject. JABB publishes articles in English only. All articles should be written strictly adopting all the rules of spelling and grammar.