J. Wertz, M. Cherry, Sean O'Rourke, Laura Homa, Nick Lorenzo, Erik Blasch
{"title":"钛(M4AT)数据集的多尺度混合模态微观结构评估","authors":"J. Wertz, M. Cherry, Sean O'Rourke, Laura Homa, Nick Lorenzo, Erik Blasch","doi":"10.32548/2022.me-04274","DOIUrl":null,"url":null,"abstract":"The capability of a material depends on multiscale physical properties. In many cases, state-of-the-art material characterization methods for micro-to-mesoscale features require extensive preparation or destructive analysis. These shortcomings limit their use for quality control of component-scale parts, as extensive preparation or destructive analysis are prohibitively expensive or impossible for real-time assessment. One example is the detection and characterization of critical microtexture regions in titanium, where the state-of-the-art sensing method is both damaging and constrained to a laboratory environment. New sensing approaches that achieve the capability of laboratory-based characterization methods without destructive assessment offer promise for manufacturing, inspection, and assembly. A potential solution is to develop novel data fusion algorithms to complement existing nondestructive evaluation (NDE) techniques.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Mixed Modality Microstructure Assessment for Titanium (M4AT) Data Set\",\"authors\":\"J. Wertz, M. Cherry, Sean O'Rourke, Laura Homa, Nick Lorenzo, Erik Blasch\",\"doi\":\"10.32548/2022.me-04274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability of a material depends on multiscale physical properties. In many cases, state-of-the-art material characterization methods for micro-to-mesoscale features require extensive preparation or destructive analysis. These shortcomings limit their use for quality control of component-scale parts, as extensive preparation or destructive analysis are prohibitively expensive or impossible for real-time assessment. One example is the detection and characterization of critical microtexture regions in titanium, where the state-of-the-art sensing method is both damaging and constrained to a laboratory environment. New sensing approaches that achieve the capability of laboratory-based characterization methods without destructive assessment offer promise for manufacturing, inspection, and assembly. A potential solution is to develop novel data fusion algorithms to complement existing nondestructive evaluation (NDE) techniques.\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32548/2022.me-04274\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2022.me-04274","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Multiscale Mixed Modality Microstructure Assessment for Titanium (M4AT) Data Set
The capability of a material depends on multiscale physical properties. In many cases, state-of-the-art material characterization methods for micro-to-mesoscale features require extensive preparation or destructive analysis. These shortcomings limit their use for quality control of component-scale parts, as extensive preparation or destructive analysis are prohibitively expensive or impossible for real-time assessment. One example is the detection and characterization of critical microtexture regions in titanium, where the state-of-the-art sensing method is both damaging and constrained to a laboratory environment. New sensing approaches that achieve the capability of laboratory-based characterization methods without destructive assessment offer promise for manufacturing, inspection, and assembly. A potential solution is to develop novel data fusion algorithms to complement existing nondestructive evaluation (NDE) techniques.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.