优化运输,最大限度地回收养分和绿色能源

Q1 Economics, Econometrics and Finance Resources, Conservation and Recycling: X Pub Date : 2020-06-01 DOI:10.1016/j.rcrx.2021.100049
Geneviève S. Metson , Roozbeh Feiz , Nils-Hassan Quttineh , Karin Tonderski
{"title":"优化运输,最大限度地回收养分和绿色能源","authors":"Geneviève S. Metson ,&nbsp;Roozbeh Feiz ,&nbsp;Nils-Hassan Quttineh ,&nbsp;Karin Tonderski","doi":"10.1016/j.rcrx.2021.100049","DOIUrl":null,"url":null,"abstract":"<div><p>A circular biobased economy must be able to sustainably manage multiple resources simultaneously. Nutrient (nitrogen, phosphorus, and potassium) recycling and renewable energy production (biogas) can be compatible practices but require substantial transport of heavy organic waste. We combine a spatial optimization model and Life Cycle Assessment (LCA) to explore how Sweden could maximize its use of excreta resources. We use <span><math><mrow><mn>10</mn><mo>×</mo><mn>10</mn></mrow></math></span> km<span><math><msup><mrow></mrow><mn>2</mn></msup></math></span> resolution data on the location of animal and human excreta and crop demand and model both optimal biogas plant locations and transport of nutrients to and from these plants. Each type of biogas plant (given 4 realistic mixes of excreta) is then evaluated for global warming potential, primary energy use and financial resource costs. Moving excreta through biogas plants, as opposed to simply reapplying on fields, to meet crop nutrient demands comes at a similar cost but the climate and primary energy savings are substantial. As much as 91% of phosphorus and 44% of nitrogen crop demand could be met via optimally transported excreta and the country would avoid about 1 450 kt of CO<sub>2</sub>-eq, save 3.6 TWh (13 000 tera-joules) of primary energy, and save 90 million euros per year. Substituting mineral fertilizers with recycled nutrients results in savings across all indicators, but the added energy and avoided greenhouse gas emissions associated with biogas production make a large difference in the attractiveness of nutrient recycling. Although the numeric values are theoretical, our results indicate that carefully coordinated and supported biogas production could help maximize multi-resource benefits.</p></div>","PeriodicalId":36714,"journal":{"name":"Resources, Conservation and Recycling: X","volume":"9 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rcrx.2021.100049","citationCount":"15","resultStr":"{\"title\":\"Optimizing transport to maximize nutrient recycling and green energy recovery\",\"authors\":\"Geneviève S. Metson ,&nbsp;Roozbeh Feiz ,&nbsp;Nils-Hassan Quttineh ,&nbsp;Karin Tonderski\",\"doi\":\"10.1016/j.rcrx.2021.100049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A circular biobased economy must be able to sustainably manage multiple resources simultaneously. Nutrient (nitrogen, phosphorus, and potassium) recycling and renewable energy production (biogas) can be compatible practices but require substantial transport of heavy organic waste. We combine a spatial optimization model and Life Cycle Assessment (LCA) to explore how Sweden could maximize its use of excreta resources. We use <span><math><mrow><mn>10</mn><mo>×</mo><mn>10</mn></mrow></math></span> km<span><math><msup><mrow></mrow><mn>2</mn></msup></math></span> resolution data on the location of animal and human excreta and crop demand and model both optimal biogas plant locations and transport of nutrients to and from these plants. Each type of biogas plant (given 4 realistic mixes of excreta) is then evaluated for global warming potential, primary energy use and financial resource costs. Moving excreta through biogas plants, as opposed to simply reapplying on fields, to meet crop nutrient demands comes at a similar cost but the climate and primary energy savings are substantial. As much as 91% of phosphorus and 44% of nitrogen crop demand could be met via optimally transported excreta and the country would avoid about 1 450 kt of CO<sub>2</sub>-eq, save 3.6 TWh (13 000 tera-joules) of primary energy, and save 90 million euros per year. Substituting mineral fertilizers with recycled nutrients results in savings across all indicators, but the added energy and avoided greenhouse gas emissions associated with biogas production make a large difference in the attractiveness of nutrient recycling. Although the numeric values are theoretical, our results indicate that carefully coordinated and supported biogas production could help maximize multi-resource benefits.</p></div>\",\"PeriodicalId\":36714,\"journal\":{\"name\":\"Resources, Conservation and Recycling: X\",\"volume\":\"9 \",\"pages\":\"Article 100049\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.rcrx.2021.100049\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources, Conservation and Recycling: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590289X21000013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources, Conservation and Recycling: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590289X21000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 15

摘要

以生物为基础的循环经济必须能够同时可持续地管理多种资源。养分(氮、磷和钾)回收和可再生能源生产(沼气)可以是兼容的做法,但需要大量的重有机废物运输。我们结合空间优化模型和生命周期评估(LCA)来探索瑞典如何最大限度地利用排泄物资源。我们使用10×10平方公里的分辨率数据来确定动物和人类排泄物的位置以及作物需求,并对最佳沼气工厂的位置以及这些工厂的营养物质的运输进行建模。然后对每种类型的沼气厂(给定4种实际的排泄物混合物)进行全球变暖潜力、一次能源使用和财务资源成本的评估。通过沼气工厂转移排泄物来满足作物的养分需求,而不是简单地在田地里重新施用,成本相似,但对气候和初级能源的节省是巨大的。通过最佳运输的排泄物可以满足91%的磷和44%的氮作物需求,国家将避免约1450千吨二氧化碳当量,节省3.6太瓦时(13000太焦耳)的一次能源,每年节省9000万欧元。用循环养分代替矿物肥料可以节省所有指标,但与沼气生产相关的增加的能源和避免的温室气体排放对养分循环的吸引力产生了很大的影响。虽然数值是理论值,但我们的结果表明,精心协调和支持沼气生产可以帮助实现多资源效益最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing transport to maximize nutrient recycling and green energy recovery

A circular biobased economy must be able to sustainably manage multiple resources simultaneously. Nutrient (nitrogen, phosphorus, and potassium) recycling and renewable energy production (biogas) can be compatible practices but require substantial transport of heavy organic waste. We combine a spatial optimization model and Life Cycle Assessment (LCA) to explore how Sweden could maximize its use of excreta resources. We use 10×10 km2 resolution data on the location of animal and human excreta and crop demand and model both optimal biogas plant locations and transport of nutrients to and from these plants. Each type of biogas plant (given 4 realistic mixes of excreta) is then evaluated for global warming potential, primary energy use and financial resource costs. Moving excreta through biogas plants, as opposed to simply reapplying on fields, to meet crop nutrient demands comes at a similar cost but the climate and primary energy savings are substantial. As much as 91% of phosphorus and 44% of nitrogen crop demand could be met via optimally transported excreta and the country would avoid about 1 450 kt of CO2-eq, save 3.6 TWh (13 000 tera-joules) of primary energy, and save 90 million euros per year. Substituting mineral fertilizers with recycled nutrients results in savings across all indicators, but the added energy and avoided greenhouse gas emissions associated with biogas production make a large difference in the attractiveness of nutrient recycling. Although the numeric values are theoretical, our results indicate that carefully coordinated and supported biogas production could help maximize multi-resource benefits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resources, Conservation and Recycling: X
Resources, Conservation and Recycling: X Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
14.50
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊最新文献
Reconfiguring repair: Contested politics and values of repair challenge instrumental discourses found in circular economies literature WITHDRAWN: Development of an Input-output model for Food-Energy-Water Nexus in the Pacific Northwest, USA The re-direction of small deposit mining: Technological solutions for raw materials supply security in a whole systems context WITHDRAWN: Insights from combining techno-economic and life cycle assessment - a case study of polyphenol extraction from red wine pomace Being shown samples of composted, granulated faecal sludge strongly influences acceptability of its use in peri-urban subsistence agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1