基于机器学习方法的高性能钠离子电池用镍锰材料放电性能预测

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS Energy technology Pub Date : 2022-09-16 DOI:10.1002/ente.202200733
Shijie Yang, Songhua Hu, Jianfeng Zhao, Hongwei Cui, Yongfei Wang, Shuai Zhao, Chunfeng Lan, Zhurong Dong
{"title":"基于机器学习方法的高性能钠离子电池用镍锰材料放电性能预测","authors":"Shijie Yang,&nbsp;Songhua Hu,&nbsp;Jianfeng Zhao,&nbsp;Hongwei Cui,&nbsp;Yongfei Wang,&nbsp;Shuai Zhao,&nbsp;Chunfeng Lan,&nbsp;Zhurong Dong","doi":"10.1002/ente.202200733","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <p>Understanding the cyclic discharge feature of oxide cathodes, such as sodium-based nickel–manganese (NMMn), determines the future applications of sodium-ion batteries. Machine learning methods, including gradient-boosting models and random forest (RF) machine, are applied to an experimental dataset of these NMMn materials. Herein, gradient-boosting models achieve a better performance than RF machine in predicting the discharge properties of these materials. The results indicate that the dopant content ratio, sodium content, and nickel content play important roles in the initial discharge capacities (IC) and 50th cycle end discharge capacities (EC) of these materials. NMMn cathodes with a specific sodium content (0.75 &lt; <i>x</i> &lt; 1.25), a dopant content (<i>x</i> &lt; 0.2), and a nickel content (<i>x</i> &lt; 0.4) are more likely to possess high ICs and ECs. Unlike the cathode for lithium-ion batteries, herein, nickel content in NMMn affects more on 50th cycle EC. These results offer new guidelines to design high-performance cathodes for sodium-ion batteries.</p>\n </section>\n </div>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction on Discharging Properties of Nickel–Manganese Materials for High-Performance Sodium-Ion Batteries via Machine Learning Methods\",\"authors\":\"Shijie Yang,&nbsp;Songhua Hu,&nbsp;Jianfeng Zhao,&nbsp;Hongwei Cui,&nbsp;Yongfei Wang,&nbsp;Shuai Zhao,&nbsp;Chunfeng Lan,&nbsp;Zhurong Dong\",\"doi\":\"10.1002/ente.202200733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <p>Understanding the cyclic discharge feature of oxide cathodes, such as sodium-based nickel–manganese (NMMn), determines the future applications of sodium-ion batteries. Machine learning methods, including gradient-boosting models and random forest (RF) machine, are applied to an experimental dataset of these NMMn materials. Herein, gradient-boosting models achieve a better performance than RF machine in predicting the discharge properties of these materials. The results indicate that the dopant content ratio, sodium content, and nickel content play important roles in the initial discharge capacities (IC) and 50th cycle end discharge capacities (EC) of these materials. NMMn cathodes with a specific sodium content (0.75 &lt; <i>x</i> &lt; 1.25), a dopant content (<i>x</i> &lt; 0.2), and a nickel content (<i>x</i> &lt; 0.4) are more likely to possess high ICs and ECs. Unlike the cathode for lithium-ion batteries, herein, nickel content in NMMn affects more on 50th cycle EC. These results offer new guidelines to design high-performance cathodes for sodium-ion batteries.</p>\\n </section>\\n </div>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202200733\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202200733","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

了解钠基镍锰(NMMn)等氧化物阴极的循环放电特性,决定了钠离子电池的未来应用。机器学习方法,包括梯度增强模型和随机森林(RF)机器,应用于这些NMMn材料的实验数据集。在此,梯度增强模型在预测这些材料的放电特性方面取得了比射频机器更好的性能。结果表明,掺杂物含量比、钠含量和镍含量对材料的初始放电容量(IC)和50次循环末放电容量(EC)有重要影响。具有特定钠含量(0.75 < x < 1.25)、掺杂含量(x < 0.2)和镍含量(x < 0.4)的NMMn阴极更有可能具有高ic和ec。与锂离子电池的正极不同,NMMn中镍含量对第50次循环EC的影响更大。这些结果为设计高性能钠离子电池阴极提供了新的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction on Discharging Properties of Nickel–Manganese Materials for High-Performance Sodium-Ion Batteries via Machine Learning Methods

Understanding the cyclic discharge feature of oxide cathodes, such as sodium-based nickel–manganese (NMMn), determines the future applications of sodium-ion batteries. Machine learning methods, including gradient-boosting models and random forest (RF) machine, are applied to an experimental dataset of these NMMn materials. Herein, gradient-boosting models achieve a better performance than RF machine in predicting the discharge properties of these materials. The results indicate that the dopant content ratio, sodium content, and nickel content play important roles in the initial discharge capacities (IC) and 50th cycle end discharge capacities (EC) of these materials. NMMn cathodes with a specific sodium content (0.75 < x < 1.25), a dopant content (x < 0.2), and a nickel content (x < 0.4) are more likely to possess high ICs and ECs. Unlike the cathode for lithium-ion batteries, herein, nickel content in NMMn affects more on 50th cycle EC. These results offer new guidelines to design high-performance cathodes for sodium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
期刊最新文献
Cover Picture Masthead Simulation and Experimental Research on a New Symmetrical Hydraulic Piezoelectric Energy Harvester Theoretical Investigation on Carbazole Derivatives as Charge Carriers for Perovskite Solar Cell Ultrasmall Fe‐Nanoclusters‐Anchored Carbon Polyhedrons Interconnected with Carbon Nanotubes for High‐Performance Zinc‐Air Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1