通过深度神经网络自动分析保险报告,识别严重索赔

IF 1.5 Q3 BUSINESS, FINANCE Annals of Actuarial Science Pub Date : 2021-03-09 DOI:10.1017/S174849952100004X
Isaac Cohen Sabban, O. Lopez, Yann Mercuzot
{"title":"通过深度神经网络自动分析保险报告,识别严重索赔","authors":"Isaac Cohen Sabban, O. Lopez, Yann Mercuzot","doi":"10.1017/S174849952100004X","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we develop a methodology to automatically classify claims using the information contained in text reports (redacted at their opening). From this automatic analysis, the aim is to predict if a claim is expected to be particularly severe or not. The difficulty is the rarity of such extreme claims in the database, and hence the difficulty, for classical prediction techniques like logistic regression to accurately predict the outcome. Since data is unbalanced (too few observations are associated with a positive label), we propose different rebalance algorithm to deal with this issue. We discuss the use of different embedding methodologies used to process text data, and the role of the architectures of the networks.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S174849952100004X","citationCount":"1","resultStr":"{\"title\":\"Automatic analysis of insurance reports through deep neural networks to identify severe claims\",\"authors\":\"Isaac Cohen Sabban, O. Lopez, Yann Mercuzot\",\"doi\":\"10.1017/S174849952100004X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we develop a methodology to automatically classify claims using the information contained in text reports (redacted at their opening). From this automatic analysis, the aim is to predict if a claim is expected to be particularly severe or not. The difficulty is the rarity of such extreme claims in the database, and hence the difficulty, for classical prediction techniques like logistic regression to accurately predict the outcome. Since data is unbalanced (too few observations are associated with a positive label), we propose different rebalance algorithm to deal with this issue. We discuss the use of different embedding methodologies used to process text data, and the role of the architectures of the networks.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S174849952100004X\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S174849952100004X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S174849952100004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要在本文中,我们开发了一种方法,使用文本报告中包含的信息自动对索赔进行分类(在报告开头进行了编辑)。通过这种自动分析,目的是预测索赔是否会特别严重。困难在于数据库中很少有这种极端的说法,因此逻辑回归等经典预测技术很难准确预测结果。由于数据是不平衡的(与阳性标签相关的观测值太少),我们提出了不同的再平衡算法来处理这个问题。我们讨论了用于处理文本数据的不同嵌入方法的使用,以及网络架构的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic analysis of insurance reports through deep neural networks to identify severe claims
Abstract In this paper, we develop a methodology to automatically classify claims using the information contained in text reports (redacted at their opening). From this automatic analysis, the aim is to predict if a claim is expected to be particularly severe or not. The difficulty is the rarity of such extreme claims in the database, and hence the difficulty, for classical prediction techniques like logistic regression to accurately predict the outcome. Since data is unbalanced (too few observations are associated with a positive label), we propose different rebalance algorithm to deal with this issue. We discuss the use of different embedding methodologies used to process text data, and the role of the architectures of the networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
期刊最新文献
Generalized Poisson random variable: its distributional properties and actuarial applications Optimizing insurance risk assessment: a regression model based on a risk-loaded approach AffineMortality: An R package for estimation, analysis, and projection of affine mortality models On the benefits of pension plan consolidation: Understanding the impact of full plan mergers Bonus-Malus Scale premiums for Tweedie’s compound Poisson models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1