{"title":"石墨烯接枝TiO2的制备及其光催化性能研究","authors":"Longli Lin, Lihua Shi, Simei Liu, Jieyi He","doi":"10.1155/2023/8676430","DOIUrl":null,"url":null,"abstract":"TiO2 has potential application prospects in the fields of environmental pollution control and energy conversion, while its characteristics including proneness to agglomeration and low activity affect practical applications. In view of this, P25 TiO2 and graphene were taken as raw materials to prepare the modified TiO2 catalyst. The modification mechanism of TiO2 was explained by characterizing the phase composition, microscopic morphology, and functional groups and analyzing the specific surface area and particle size. Then, the photocatalytic performance of the material was explored by taking methyl orange as the target to be degraded. Results show that TiO2 is well grafted to the laminated structure of graphene using physicochemical interactions among the introduced functional groups after modifying P25 TiO2 and graphene. This way, the 10.00 mg·L-1 methyl orange solution is almost completely degraded within 12 min at a reaction rate that is 1.81 times higher than that of P25 TiO2. Even after being used for 10 times, the performance still remains stable. The modification process is simple, and the method is reliable. Results can promote the practical application of TiO2 photocatalytic technology.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of TiO2 Grafted on Graphene and Study on their Photocatalytic Properties\",\"authors\":\"Longli Lin, Lihua Shi, Simei Liu, Jieyi He\",\"doi\":\"10.1155/2023/8676430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TiO2 has potential application prospects in the fields of environmental pollution control and energy conversion, while its characteristics including proneness to agglomeration and low activity affect practical applications. In view of this, P25 TiO2 and graphene were taken as raw materials to prepare the modified TiO2 catalyst. The modification mechanism of TiO2 was explained by characterizing the phase composition, microscopic morphology, and functional groups and analyzing the specific surface area and particle size. Then, the photocatalytic performance of the material was explored by taking methyl orange as the target to be degraded. Results show that TiO2 is well grafted to the laminated structure of graphene using physicochemical interactions among the introduced functional groups after modifying P25 TiO2 and graphene. This way, the 10.00 mg·L-1 methyl orange solution is almost completely degraded within 12 min at a reaction rate that is 1.81 times higher than that of P25 TiO2. Even after being used for 10 times, the performance still remains stable. The modification process is simple, and the method is reliable. Results can promote the practical application of TiO2 photocatalytic technology.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8676430\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8676430","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Preparation of TiO2 Grafted on Graphene and Study on their Photocatalytic Properties
TiO2 has potential application prospects in the fields of environmental pollution control and energy conversion, while its characteristics including proneness to agglomeration and low activity affect practical applications. In view of this, P25 TiO2 and graphene were taken as raw materials to prepare the modified TiO2 catalyst. The modification mechanism of TiO2 was explained by characterizing the phase composition, microscopic morphology, and functional groups and analyzing the specific surface area and particle size. Then, the photocatalytic performance of the material was explored by taking methyl orange as the target to be degraded. Results show that TiO2 is well grafted to the laminated structure of graphene using physicochemical interactions among the introduced functional groups after modifying P25 TiO2 and graphene. This way, the 10.00 mg·L-1 methyl orange solution is almost completely degraded within 12 min at a reaction rate that is 1.81 times higher than that of P25 TiO2. Even after being used for 10 times, the performance still remains stable. The modification process is simple, and the method is reliable. Results can promote the practical application of TiO2 photocatalytic technology.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells