1,3-二恶氧烷在对流层中的命运:动力学、具有理论支持的机制和大气意义

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Journal of Atmospheric Chemistry Pub Date : 2023-04-12 DOI:10.1007/s10874-023-09446-7
Anmol Virmani, Mohini P. Walavalkar, Asmita Sharma, Ankur Saha, Sumana Sengupta, Awadhesh Kumar
{"title":"1,3-二恶氧烷在对流层中的命运:动力学、具有理论支持的机制和大气意义","authors":"Anmol Virmani,&nbsp;Mohini P. Walavalkar,&nbsp;Asmita Sharma,&nbsp;Ankur Saha,&nbsp;Sumana Sengupta,&nbsp;Awadhesh Kumar","doi":"10.1007/s10874-023-09446-7","DOIUrl":null,"url":null,"abstract":"<div><p>The atmospheric fate of 1,3-dioxolane is assessed by measuring the OH and Cl initiated gas-phase oxidation kinetics, and exploring their mechanistic pathways. Absolute OH reaction rate coefficient of 1,3-dioxolane using laser photolysis-laser induced fluorescence technique is found to be (1.27 ± 0.03) × 10<sup>–11</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> at 298 ± 2 K and it is in good agreement with the measured relative value of (1.13 ± 0.12) × 10<sup>–11</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>, using gas-chromatography. Relative value of Cl reaction rate coefficient with 1,3-dioxolane is found to be (1.64 ± 0.60) × 10<sup>–10</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>. The tropospheric lifetime of 1,3-dioxolane is calculated to be about 22 h under ambient conditions. Interestingly, it reduces to about 8 h near marine boundary layer, where Cl reaction takes over the OH reaction. Such a short lifetime with respect to reaction with OH and Cl suggests the atmospheric impact of 1,3-dioxolane to be local. Formic acid, ethylene carbonate, and 1,2-ethanediol monoformate are observed as stable products in OH as well as Cl oxidation. 1,3-dioxolane may contribute as one of the sources of formic acid in the atmosphere. Theoretical calculations for the OH-initiated hydrogen abstraction of 1,3-dioxolane revealed that the reaction follows an indirect path through the formation of pre- and post-reaction complexes at entrance and exit channels, respectively with the lowest barrier height of 3.5 kcal/mol. Photochemical ozone creation potential of 1,3-dioxolane is calculated.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-023-09446-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Fate of 1,3-dioxolane in the troposphere: kinetics, mechanism with theoretical support, and atmospheric implications\",\"authors\":\"Anmol Virmani,&nbsp;Mohini P. Walavalkar,&nbsp;Asmita Sharma,&nbsp;Ankur Saha,&nbsp;Sumana Sengupta,&nbsp;Awadhesh Kumar\",\"doi\":\"10.1007/s10874-023-09446-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The atmospheric fate of 1,3-dioxolane is assessed by measuring the OH and Cl initiated gas-phase oxidation kinetics, and exploring their mechanistic pathways. Absolute OH reaction rate coefficient of 1,3-dioxolane using laser photolysis-laser induced fluorescence technique is found to be (1.27 ± 0.03) × 10<sup>–11</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> at 298 ± 2 K and it is in good agreement with the measured relative value of (1.13 ± 0.12) × 10<sup>–11</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>, using gas-chromatography. Relative value of Cl reaction rate coefficient with 1,3-dioxolane is found to be (1.64 ± 0.60) × 10<sup>–10</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>. The tropospheric lifetime of 1,3-dioxolane is calculated to be about 22 h under ambient conditions. Interestingly, it reduces to about 8 h near marine boundary layer, where Cl reaction takes over the OH reaction. Such a short lifetime with respect to reaction with OH and Cl suggests the atmospheric impact of 1,3-dioxolane to be local. Formic acid, ethylene carbonate, and 1,2-ethanediol monoformate are observed as stable products in OH as well as Cl oxidation. 1,3-dioxolane may contribute as one of the sources of formic acid in the atmosphere. Theoretical calculations for the OH-initiated hydrogen abstraction of 1,3-dioxolane revealed that the reaction follows an indirect path through the formation of pre- and post-reaction complexes at entrance and exit channels, respectively with the lowest barrier height of 3.5 kcal/mol. Photochemical ozone creation potential of 1,3-dioxolane is calculated.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10874-023-09446-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-023-09446-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-023-09446-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过测量OH和Cl引发的气相氧化动力学,探讨了1,3-二恶烷的大气命运,并探讨了它们的机理途径。用激光光解-激光诱导荧光技术测定的1,3-二氧唑烷在298±2 K下的绝对OH反应速率系数为(1.27±0.03)× 10-11 cm3分子−1 s−1,与气相色谱法测定的(1.13±0.12)× 10-11 cm3分子−1 s−1的相对值吻合较好。发现Cl与1,3-二恶烷反应速率系数的相对值为(1.64±0.60)× 10-10 cm3分子−1 s−1。在环境条件下,1,3-二恶烷在对流层的寿命约为22小时。有趣的是,它在海洋边界层附近减少到约8小时,Cl反应取代OH反应。就与OH和Cl的反应而言,如此短的寿命表明1,3-二恶氧烷对大气的影响是局部的。甲酸、碳酸乙烯和单甲酸1,2-乙二醇是OH和Cl氧化的稳定产物。1,3-二恶烷可能是大气中甲酸的来源之一。对羟基引发1,3-二氧唑烷吸氢的理论计算表明,该反应遵循间接途径,在入口和出口通道分别形成反应前和反应后的配合物,最低势垒高度为3.5 kcal/mol。计算了1,3-二恶氧烷的光化学臭氧生成势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fate of 1,3-dioxolane in the troposphere: kinetics, mechanism with theoretical support, and atmospheric implications

The atmospheric fate of 1,3-dioxolane is assessed by measuring the OH and Cl initiated gas-phase oxidation kinetics, and exploring their mechanistic pathways. Absolute OH reaction rate coefficient of 1,3-dioxolane using laser photolysis-laser induced fluorescence technique is found to be (1.27 ± 0.03) × 10–11 cm3 molecule−1 s−1 at 298 ± 2 K and it is in good agreement with the measured relative value of (1.13 ± 0.12) × 10–11 cm3 molecule−1 s−1, using gas-chromatography. Relative value of Cl reaction rate coefficient with 1,3-dioxolane is found to be (1.64 ± 0.60) × 10–10 cm3 molecule−1 s−1. The tropospheric lifetime of 1,3-dioxolane is calculated to be about 22 h under ambient conditions. Interestingly, it reduces to about 8 h near marine boundary layer, where Cl reaction takes over the OH reaction. Such a short lifetime with respect to reaction with OH and Cl suggests the atmospheric impact of 1,3-dioxolane to be local. Formic acid, ethylene carbonate, and 1,2-ethanediol monoformate are observed as stable products in OH as well as Cl oxidation. 1,3-dioxolane may contribute as one of the sources of formic acid in the atmosphere. Theoretical calculations for the OH-initiated hydrogen abstraction of 1,3-dioxolane revealed that the reaction follows an indirect path through the formation of pre- and post-reaction complexes at entrance and exit channels, respectively with the lowest barrier height of 3.5 kcal/mol. Photochemical ozone creation potential of 1,3-dioxolane is calculated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
期刊最新文献
A review on sequential extraction of metals bound particulate matter and their health risk assessment Correction: India’s cultural heritage: Air quality effects amidst COVID-19 lockdown and seasonal variability Analyzing air quality status at India’s heritage sites: Climate, COVID-19 lockdown, and Solutions Quantification and source apportionment of atmospheric trace gases over Dhaka, Bangladesh Toxic heavy metals in rainwater samples of Tehran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1