基于长时间特征聚合的时空视频超分辨率

Kuanhao Chen, Zijie Yue, Miaojing Shi
{"title":"基于长时间特征聚合的时空视频超分辨率","authors":"Kuanhao Chen,&nbsp;Zijie Yue,&nbsp;Miaojing Shi","doi":"10.1007/s43684-023-00051-9","DOIUrl":null,"url":null,"abstract":"<div><p>Space-time video super-resolution (STVSR) serves the purpose to reconstruct high-resolution high-frame-rate videos from their low-resolution low-frame-rate counterparts. Recent approaches utilize end-to-end deep learning models to achieve STVSR. They first interpolate intermediate frame features between given frames, then perform local and global refinement among the feature sequence, and finally increase the spatial resolutions of these features. However, in the most important feature interpolation phase, they only capture spatial-temporal information from the most adjacent frame features, ignoring modelling long-term spatial-temporal correlations between multiple neighbouring frames to restore variable-speed object movements and maintain long-term motion continuity. In this paper, we propose a novel long-term temporal feature aggregation network (LTFA-Net) for STVSR. Specifically, we design a long-term mixture of experts (LTMoE) module for feature interpolation. LTMoE contains multiple experts to extract mutual and complementary spatial-temporal information from multiple consecutive adjacent frame features, which are then combined with different weights to obtain interpolation results using several gating nets. Next, we perform local and global feature refinement using the Locally-temporal Feature Comparison (LFC) module and bidirectional deformable ConvLSTM layer, respectively. Experimental results on two standard benchmarks, Adobe240 and GoPro, indicate the effectiveness and superiority of our approach over state of the art.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00051-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Space-time video super-resolution using long-term temporal feature aggregation\",\"authors\":\"Kuanhao Chen,&nbsp;Zijie Yue,&nbsp;Miaojing Shi\",\"doi\":\"10.1007/s43684-023-00051-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Space-time video super-resolution (STVSR) serves the purpose to reconstruct high-resolution high-frame-rate videos from their low-resolution low-frame-rate counterparts. Recent approaches utilize end-to-end deep learning models to achieve STVSR. They first interpolate intermediate frame features between given frames, then perform local and global refinement among the feature sequence, and finally increase the spatial resolutions of these features. However, in the most important feature interpolation phase, they only capture spatial-temporal information from the most adjacent frame features, ignoring modelling long-term spatial-temporal correlations between multiple neighbouring frames to restore variable-speed object movements and maintain long-term motion continuity. In this paper, we propose a novel long-term temporal feature aggregation network (LTFA-Net) for STVSR. Specifically, we design a long-term mixture of experts (LTMoE) module for feature interpolation. LTMoE contains multiple experts to extract mutual and complementary spatial-temporal information from multiple consecutive adjacent frame features, which are then combined with different weights to obtain interpolation results using several gating nets. Next, we perform local and global feature refinement using the Locally-temporal Feature Comparison (LFC) module and bidirectional deformable ConvLSTM layer, respectively. Experimental results on two standard benchmarks, Adobe240 and GoPro, indicate the effectiveness and superiority of our approach over state of the art.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-023-00051-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-023-00051-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-023-00051-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时空视频超分辨率(STVSR)的目的是从低分辨率、低帧率的对应视频中重建高分辨率、高帧率的视频。最近的方法利用端到端的深度学习模型来实现 STVSR。它们首先在给定帧之间插值中间帧特征,然后在特征序列之间执行局部和全局细化,最后提高这些特征的空间分辨率。然而,在最重要的特征插值阶段,它们只捕捉到了最相邻帧特征的时空信息,而忽略了对多个相邻帧之间的长期时空相关性进行建模,以还原物体的变速运动并保持长期运动的连续性。在本文中,我们提出了一种用于 STVSR 的新型长期时间特征聚合网络(LTFA-Net)。具体来说,我们设计了一个用于特征插值的长期专家混合(LTMoE)模块。LTMoE 包含多个专家,可从多个连续的相邻帧特征中提取互补的时空信息,然后将其与不同的权重相结合,利用多个门控网络获得插值结果。接下来,我们利用局部-时间特征比较(LFC)模块和双向可变形 ConvLSTM 层分别对局部和全局特征进行细化。在 Adobe240 和 GoPro 这两个标准基准上的实验结果表明,我们的方法比现有技术更有效、更优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Space-time video super-resolution using long-term temporal feature aggregation

Space-time video super-resolution (STVSR) serves the purpose to reconstruct high-resolution high-frame-rate videos from their low-resolution low-frame-rate counterparts. Recent approaches utilize end-to-end deep learning models to achieve STVSR. They first interpolate intermediate frame features between given frames, then perform local and global refinement among the feature sequence, and finally increase the spatial resolutions of these features. However, in the most important feature interpolation phase, they only capture spatial-temporal information from the most adjacent frame features, ignoring modelling long-term spatial-temporal correlations between multiple neighbouring frames to restore variable-speed object movements and maintain long-term motion continuity. In this paper, we propose a novel long-term temporal feature aggregation network (LTFA-Net) for STVSR. Specifically, we design a long-term mixture of experts (LTMoE) module for feature interpolation. LTMoE contains multiple experts to extract mutual and complementary spatial-temporal information from multiple consecutive adjacent frame features, which are then combined with different weights to obtain interpolation results using several gating nets. Next, we perform local and global feature refinement using the Locally-temporal Feature Comparison (LFC) module and bidirectional deformable ConvLSTM layer, respectively. Experimental results on two standard benchmarks, Adobe240 and GoPro, indicate the effectiveness and superiority of our approach over state of the art.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1