依托芬prox纳米制剂对茄子果实中银粉虱、烟粉虱及其残留的抑制作用

IF 0.7 Q3 AGRONOMY Journal of Plant Protection Research Pub Date : 2023-03-22 DOI:10.24425/jppr.2023.144501
{"title":"依托芬prox纳米制剂对茄子果实中银粉虱、烟粉虱及其残留的抑制作用","authors":"","doi":"10.24425/jppr.2023.144501","DOIUrl":null,"url":null,"abstract":"The normal formulation of etofenprox was developed to nanoformulation and used against the adults of silver whitefly, Bemisia tabaci in eggplant fields. Three concentrations of both the normal and nanoformulations were used. The concentrations of etofenprox nanoformulation were one-fifth of the normal formulation. The nanosize of etofenprox ranged from 225 to 489 nm. The loading capacity of etofenprox was 60.7 ± 5.7%. The obtained results showed that the LC 50 of the normal formulation was four times more than the nanoformulation. The LC 50 for the nanoformulation was 0.9 and 3.5 ppm for the normal formulation of etofenprox. This means that the nanoformulation of etofenprox was more effective than the normal. The residues of both nano and normal formulations were determined in eggplant fruits after three applications. The obtained results showed that the residue of nanoformulation after 1 hour of treatment was 0.51 ± 0.03 compared with 0.62 ± 0.03 mg · kg –1 ± SD in normal formulation. After 1 hour of treatment the residue of etofenprox was reduced to 0.11 ± 0.1 and 0.22 ± 0.02 mg · kg –1 ± SD in nano and normal formulations, respectively. The dissipation rates of both nano and normal formulations after 1 hour were 78.3 and 64.5%, respectively. The degradation rate ( K ) in nanoformulation and normal etofenprox was 1.33 and 0.73 mg · kg –1 ± SD, respectively. The residue half-life (LR 50 ) was 0.52 and 1 day, respectively. The preharvest interval (PHI) was 6 days for both nano and normal etofenprox formulations. The results confirmed that nanoetofenprox was more effective against B. tabaci adults, with lower persistence and lower residue than the normal formulation of etofenprox.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of etofenprox nanoformulation in suppression of the silver whitefly, Bemisia tabaci and its residue in eggplant fruits\",\"authors\":\"\",\"doi\":\"10.24425/jppr.2023.144501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The normal formulation of etofenprox was developed to nanoformulation and used against the adults of silver whitefly, Bemisia tabaci in eggplant fields. Three concentrations of both the normal and nanoformulations were used. The concentrations of etofenprox nanoformulation were one-fifth of the normal formulation. The nanosize of etofenprox ranged from 225 to 489 nm. The loading capacity of etofenprox was 60.7 ± 5.7%. The obtained results showed that the LC 50 of the normal formulation was four times more than the nanoformulation. The LC 50 for the nanoformulation was 0.9 and 3.5 ppm for the normal formulation of etofenprox. This means that the nanoformulation of etofenprox was more effective than the normal. The residues of both nano and normal formulations were determined in eggplant fruits after three applications. The obtained results showed that the residue of nanoformulation after 1 hour of treatment was 0.51 ± 0.03 compared with 0.62 ± 0.03 mg · kg –1 ± SD in normal formulation. After 1 hour of treatment the residue of etofenprox was reduced to 0.11 ± 0.1 and 0.22 ± 0.02 mg · kg –1 ± SD in nano and normal formulations, respectively. The dissipation rates of both nano and normal formulations after 1 hour were 78.3 and 64.5%, respectively. The degradation rate ( K ) in nanoformulation and normal etofenprox was 1.33 and 0.73 mg · kg –1 ± SD, respectively. The residue half-life (LR 50 ) was 0.52 and 1 day, respectively. The preharvest interval (PHI) was 6 days for both nano and normal etofenprox formulations. The results confirmed that nanoetofenprox was more effective against B. tabaci adults, with lower persistence and lower residue than the normal formulation of etofenprox.\",\"PeriodicalId\":16848,\"journal\":{\"name\":\"Journal of Plant Protection Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Protection Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/jppr.2023.144501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Protection Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/jppr.2023.144501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of etofenprox nanoformulation in suppression of the silver whitefly, Bemisia tabaci and its residue in eggplant fruits
The normal formulation of etofenprox was developed to nanoformulation and used against the adults of silver whitefly, Bemisia tabaci in eggplant fields. Three concentrations of both the normal and nanoformulations were used. The concentrations of etofenprox nanoformulation were one-fifth of the normal formulation. The nanosize of etofenprox ranged from 225 to 489 nm. The loading capacity of etofenprox was 60.7 ± 5.7%. The obtained results showed that the LC 50 of the normal formulation was four times more than the nanoformulation. The LC 50 for the nanoformulation was 0.9 and 3.5 ppm for the normal formulation of etofenprox. This means that the nanoformulation of etofenprox was more effective than the normal. The residues of both nano and normal formulations were determined in eggplant fruits after three applications. The obtained results showed that the residue of nanoformulation after 1 hour of treatment was 0.51 ± 0.03 compared with 0.62 ± 0.03 mg · kg –1 ± SD in normal formulation. After 1 hour of treatment the residue of etofenprox was reduced to 0.11 ± 0.1 and 0.22 ± 0.02 mg · kg –1 ± SD in nano and normal formulations, respectively. The dissipation rates of both nano and normal formulations after 1 hour were 78.3 and 64.5%, respectively. The degradation rate ( K ) in nanoformulation and normal etofenprox was 1.33 and 0.73 mg · kg –1 ± SD, respectively. The residue half-life (LR 50 ) was 0.52 and 1 day, respectively. The preharvest interval (PHI) was 6 days for both nano and normal etofenprox formulations. The results confirmed that nanoetofenprox was more effective against B. tabaci adults, with lower persistence and lower residue than the normal formulation of etofenprox.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Protection Research
Journal of Plant Protection Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.10
自引率
9.10%
发文量
0
审稿时长
30 weeks
期刊最新文献
Removal of lead ions from aqueous solutions by modified cellulose. Female delayed mating and shortened pairing duration reduce the reproductive performance of tea mosquito bugs ( Helopeltis bradyi) Effects of water-based extracts of peppermint ( Mentha piperita L.) and French marigold (T agetes patula L.) on the transformation of larvae and nymphs of two-spotted spider mite ( Tetranychus urticae Koch) Interaction of endophytic fungi of winter wheat seeds Microencapsulation of Eucalyptus globulus essential oil anti-fungal sachet against blue mold on peaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1