{"title":"磷脂包封纳米硒的合成及稳定性研究","authors":"Jinhui Huang, Xuegui Lin, Yongchuan Zhu, Xue-Ping Sun, Jiesheng Chen, Yingde Cui","doi":"10.1515/gps-2022-8100","DOIUrl":null,"url":null,"abstract":"Abstract Red elemental nano-selenium, which is an important biological form of selenium, exhibits very low toxicity and remarkable biological properties and thus has several positive effects. For instance, it shows antioxidation and antistress characteristics, promotes growth and improves immunity. However, owing to its nanoscale size, it is very difficult to disperse and stabilize during synthesis and storage. In this study, nanoscale selenium with a mass content of 2.06% and an average particle size of 49 nm was prepared by the chemical reduction method. The analysis demonstrated that the surface phospholipids formed lamellar structures after directional freezing, and the nano-selenium particles were distributed in the middle of the lamellar. The nano-selenium particles were efficiently dispersed due to their lamellar structure and amphiphilicity. The particles displayed excellent stability and remained relatively unchanged after 20 days of storage in solution or solid state. The difficulties associated with the dispersion and storage stability of nanometer selenium during preparation were solved.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and stability of phospholipid-encapsulated nano-selenium\",\"authors\":\"Jinhui Huang, Xuegui Lin, Yongchuan Zhu, Xue-Ping Sun, Jiesheng Chen, Yingde Cui\",\"doi\":\"10.1515/gps-2022-8100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Red elemental nano-selenium, which is an important biological form of selenium, exhibits very low toxicity and remarkable biological properties and thus has several positive effects. For instance, it shows antioxidation and antistress characteristics, promotes growth and improves immunity. However, owing to its nanoscale size, it is very difficult to disperse and stabilize during synthesis and storage. In this study, nanoscale selenium with a mass content of 2.06% and an average particle size of 49 nm was prepared by the chemical reduction method. The analysis demonstrated that the surface phospholipids formed lamellar structures after directional freezing, and the nano-selenium particles were distributed in the middle of the lamellar. The nano-selenium particles were efficiently dispersed due to their lamellar structure and amphiphilicity. The particles displayed excellent stability and remained relatively unchanged after 20 days of storage in solution or solid state. The difficulties associated with the dispersion and storage stability of nanometer selenium during preparation were solved.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2022-8100\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2022-8100","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and stability of phospholipid-encapsulated nano-selenium
Abstract Red elemental nano-selenium, which is an important biological form of selenium, exhibits very low toxicity and remarkable biological properties and thus has several positive effects. For instance, it shows antioxidation and antistress characteristics, promotes growth and improves immunity. However, owing to its nanoscale size, it is very difficult to disperse and stabilize during synthesis and storage. In this study, nanoscale selenium with a mass content of 2.06% and an average particle size of 49 nm was prepared by the chemical reduction method. The analysis demonstrated that the surface phospholipids formed lamellar structures after directional freezing, and the nano-selenium particles were distributed in the middle of the lamellar. The nano-selenium particles were efficiently dispersed due to their lamellar structure and amphiphilicity. The particles displayed excellent stability and remained relatively unchanged after 20 days of storage in solution or solid state. The difficulties associated with the dispersion and storage stability of nanometer selenium during preparation were solved.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.