R. Pažout, J. Plášil, M. Dušek, J. Sejkora, Z. Dolníček
{"title":"Holubite,Ag3Pb6(Sb8Bi3)∑11S24,来自捷克共和国KutnáHora,是绿柱石同源系列的一个新成员","authors":"R. Pažout, J. Plášil, M. Dušek, J. Sejkora, Z. Dolníček","doi":"10.1180/mgm.2023.34","DOIUrl":null,"url":null,"abstract":"Abstract A new mineral species, holubite, ideally Ag3Pb6(Sb8Bi3)Σ11S24, has been found at Kutná Hora ore district, Czech Republic. The mineral is associated with other lillianite homologues (gustavite, terrywallaceite, vikingite and treasurite) most frequently as grain aggregates and replacement rims of earlier Ag–Pb–Bi minerals, growing together in aggregates up to 200 × 50 μm. It typically occurs in a close association with Ag,Bi-bearing galena and terrywallaceite. Holubite is opaque, steel-grey in colour and has a metallic lustre, the calculated density is 5.899 g/cm3. In reflected light holubite is greyish white and bireflectance and pleochroism are weak with grey tints. Anisotropy is weak to medium with grey to bluish-grey rotation tints. Internal reflections were not observed. Electron microprobe analyses yielded an empirical formula, based on 44 atoms per formula unit (apfu) of (Ag3.03Cu0.03)Σ3.06(Pb6.19Fe0.02Cd0.01)Σ6.22(Sb7.71Bi2.90)Σ10.61S24.12. Its unit-cell parameters are: a = 19.374(4), b = 13.201(3), c = 8.651(2) Å, β = 90.112(18)°, V = 2212.5(9) Å3, space group P21/n and Z = 2. Holubite is a new member of the andorite branch of the lillianite homologous series with N = 4. The structure of holubite contains two Pb sites with a trigonal prismatic coordination, eight distinct octahedral sites, of which one is a mixed (Bi,Ag) site and one is a mixed (Sb,Pb) site, and twelve anion sites. Holubite is defined as a lillianite homologue with the three following requirements: N = 4, L% [Ag+ + (Bi3+,Sb3+) ↔ 2 Pb2+ substitution] ≈ 70% and approximately one quarter to one third at.% of antimony is replaced by bismuth [Bi/(Bi+Sb) ≈ 0.26–34]. The new mineral has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2022-112) and named after Milan Holub, a key Czech geologist and specialist in the Kutná Hora ore district.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"582 - 590"},"PeriodicalIF":2.8000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holubite, Ag3Pb6(Sb8Bi3)Σ11S24, from Kutná Hora, Czech Republic, a new member of the andorite branch of the lillianite homologous series\",\"authors\":\"R. Pažout, J. Plášil, M. Dušek, J. Sejkora, Z. Dolníček\",\"doi\":\"10.1180/mgm.2023.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new mineral species, holubite, ideally Ag3Pb6(Sb8Bi3)Σ11S24, has been found at Kutná Hora ore district, Czech Republic. The mineral is associated with other lillianite homologues (gustavite, terrywallaceite, vikingite and treasurite) most frequently as grain aggregates and replacement rims of earlier Ag–Pb–Bi minerals, growing together in aggregates up to 200 × 50 μm. It typically occurs in a close association with Ag,Bi-bearing galena and terrywallaceite. Holubite is opaque, steel-grey in colour and has a metallic lustre, the calculated density is 5.899 g/cm3. In reflected light holubite is greyish white and bireflectance and pleochroism are weak with grey tints. Anisotropy is weak to medium with grey to bluish-grey rotation tints. Internal reflections were not observed. Electron microprobe analyses yielded an empirical formula, based on 44 atoms per formula unit (apfu) of (Ag3.03Cu0.03)Σ3.06(Pb6.19Fe0.02Cd0.01)Σ6.22(Sb7.71Bi2.90)Σ10.61S24.12. Its unit-cell parameters are: a = 19.374(4), b = 13.201(3), c = 8.651(2) Å, β = 90.112(18)°, V = 2212.5(9) Å3, space group P21/n and Z = 2. Holubite is a new member of the andorite branch of the lillianite homologous series with N = 4. The structure of holubite contains two Pb sites with a trigonal prismatic coordination, eight distinct octahedral sites, of which one is a mixed (Bi,Ag) site and one is a mixed (Sb,Pb) site, and twelve anion sites. Holubite is defined as a lillianite homologue with the three following requirements: N = 4, L% [Ag+ + (Bi3+,Sb3+) ↔ 2 Pb2+ substitution] ≈ 70% and approximately one quarter to one third at.% of antimony is replaced by bismuth [Bi/(Bi+Sb) ≈ 0.26–34]. The new mineral has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2022-112) and named after Milan Holub, a key Czech geologist and specialist in the Kutná Hora ore district.\",\"PeriodicalId\":18618,\"journal\":{\"name\":\"Mineralogical Magazine\",\"volume\":\"87 1\",\"pages\":\"582 - 590\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogical Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/mgm.2023.34\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogical Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/mgm.2023.34","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINERALOGY","Score":null,"Total":0}
Holubite, Ag3Pb6(Sb8Bi3)Σ11S24, from Kutná Hora, Czech Republic, a new member of the andorite branch of the lillianite homologous series
Abstract A new mineral species, holubite, ideally Ag3Pb6(Sb8Bi3)Σ11S24, has been found at Kutná Hora ore district, Czech Republic. The mineral is associated with other lillianite homologues (gustavite, terrywallaceite, vikingite and treasurite) most frequently as grain aggregates and replacement rims of earlier Ag–Pb–Bi minerals, growing together in aggregates up to 200 × 50 μm. It typically occurs in a close association with Ag,Bi-bearing galena and terrywallaceite. Holubite is opaque, steel-grey in colour and has a metallic lustre, the calculated density is 5.899 g/cm3. In reflected light holubite is greyish white and bireflectance and pleochroism are weak with grey tints. Anisotropy is weak to medium with grey to bluish-grey rotation tints. Internal reflections were not observed. Electron microprobe analyses yielded an empirical formula, based on 44 atoms per formula unit (apfu) of (Ag3.03Cu0.03)Σ3.06(Pb6.19Fe0.02Cd0.01)Σ6.22(Sb7.71Bi2.90)Σ10.61S24.12. Its unit-cell parameters are: a = 19.374(4), b = 13.201(3), c = 8.651(2) Å, β = 90.112(18)°, V = 2212.5(9) Å3, space group P21/n and Z = 2. Holubite is a new member of the andorite branch of the lillianite homologous series with N = 4. The structure of holubite contains two Pb sites with a trigonal prismatic coordination, eight distinct octahedral sites, of which one is a mixed (Bi,Ag) site and one is a mixed (Sb,Pb) site, and twelve anion sites. Holubite is defined as a lillianite homologue with the three following requirements: N = 4, L% [Ag+ + (Bi3+,Sb3+) ↔ 2 Pb2+ substitution] ≈ 70% and approximately one quarter to one third at.% of antimony is replaced by bismuth [Bi/(Bi+Sb) ≈ 0.26–34]. The new mineral has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2022-112) and named after Milan Holub, a key Czech geologist and specialist in the Kutná Hora ore district.
期刊介绍:
Mineralogical Magazine is an international journal of mineral sciences which covers the fields of mineralogy, crystallography, geochemistry, petrology, environmental geology and economic geology. The journal has been published continuously since the founding of the Mineralogical Society of Great Britain and Ireland in 1876 and is a leading journal in its field.