{"title":"肿瘤节律化疗的数学依据","authors":"L. Fern'andez, C. Pola, Judith Sáinz-Pardo:","doi":"10.21203/rs.3.rs-1113138/v1","DOIUrl":null,"url":null,"abstract":"\n We mathematically justify metronomic chemotherapy as the best strategy to apply most cytotoxic drugs in oncology for both curative and palliative approaches, assuming the classical pharmacokinetic model together with the Emax pharmacodynamic and the Norton-Simon hypothesis.From the mathematical point of view, we will consider two mixed-integer nonlinear optimization problems, where the unknowns are the number of the doses and the quantity of each one, adjusting the administration times a posteriori.Mathematics Subject Classification: 93C15, 92C50, 90C30","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A mathematical justification for metronomic chemotherapy in oncology\",\"authors\":\"L. Fern'andez, C. Pola, Judith Sáinz-Pardo:\",\"doi\":\"10.21203/rs.3.rs-1113138/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We mathematically justify metronomic chemotherapy as the best strategy to apply most cytotoxic drugs in oncology for both curative and palliative approaches, assuming the classical pharmacokinetic model together with the Emax pharmacodynamic and the Norton-Simon hypothesis.From the mathematical point of view, we will consider two mixed-integer nonlinear optimization problems, where the unknowns are the number of the doses and the quantity of each one, adjusting the administration times a posteriori.Mathematics Subject Classification: 93C15, 92C50, 90C30\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-1113138/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-1113138/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A mathematical justification for metronomic chemotherapy in oncology
We mathematically justify metronomic chemotherapy as the best strategy to apply most cytotoxic drugs in oncology for both curative and palliative approaches, assuming the classical pharmacokinetic model together with the Emax pharmacodynamic and the Norton-Simon hypothesis.From the mathematical point of view, we will consider two mixed-integer nonlinear optimization problems, where the unknowns are the number of the doses and the quantity of each one, adjusting the administration times a posteriori.Mathematics Subject Classification: 93C15, 92C50, 90C30