{"title":"振动能量输运中的非平衡格林函数(NEGF):局部综述","authors":"C. Polanco","doi":"10.1080/15567265.2021.1881193","DOIUrl":null,"url":null,"abstract":"ABSTRACT Recent advances in fabrication techniques have enabled the development of materials sculpted at the nanoscale (~10 nm). These “nano-materials” could revolutionize thermal management technologies by providing novel ways to manipulate energy propagation in solids. Atomistic simulations are critical to forging this revolution, given their ability to describe a system’s dynamics on an atom by atom basis. This topical review focuses on nonequilibrium Green’s functions (NEGF) simulations to model vibrational energy propagation at the nanoscale. NEGF is an atomistic and purely quantum mechanical approach well-suited to compute thermal transport in spatially varying systems such as “nano-materials.” This review presents the NEGF methodology from a top-to-bottom perspective, focusing on the concepts behind the mathematical expressions. We start describing the implementation of NEGF that assumes harmonic interatomic potentials (h-NEGF) and some recent advances that distinguish the transport contributions by different polarizations. This review also discusses the less common implementation of NEGF that includes the anharmonic terms of the potentials (a-NEGF), outlining existing approximations and standing challenges. Our success in tackling these challenges will determine whether we will harness the full potential of NEGF to describe thermal transport from a quantum mechanical standpoint.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"25 1","pages":"1 - 24"},"PeriodicalIF":2.7000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2021.1881193","citationCount":"9","resultStr":"{\"title\":\"Nonequilibrium Green’s functions (NEGF) in vibrational energy transport: a topical review\",\"authors\":\"C. Polanco\",\"doi\":\"10.1080/15567265.2021.1881193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Recent advances in fabrication techniques have enabled the development of materials sculpted at the nanoscale (~10 nm). These “nano-materials” could revolutionize thermal management technologies by providing novel ways to manipulate energy propagation in solids. Atomistic simulations are critical to forging this revolution, given their ability to describe a system’s dynamics on an atom by atom basis. This topical review focuses on nonequilibrium Green’s functions (NEGF) simulations to model vibrational energy propagation at the nanoscale. NEGF is an atomistic and purely quantum mechanical approach well-suited to compute thermal transport in spatially varying systems such as “nano-materials.” This review presents the NEGF methodology from a top-to-bottom perspective, focusing on the concepts behind the mathematical expressions. We start describing the implementation of NEGF that assumes harmonic interatomic potentials (h-NEGF) and some recent advances that distinguish the transport contributions by different polarizations. This review also discusses the less common implementation of NEGF that includes the anharmonic terms of the potentials (a-NEGF), outlining existing approximations and standing challenges. Our success in tackling these challenges will determine whether we will harness the full potential of NEGF to describe thermal transport from a quantum mechanical standpoint.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"25 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2021.1881193\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2021.1881193\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2021.1881193","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Nonequilibrium Green’s functions (NEGF) in vibrational energy transport: a topical review
ABSTRACT Recent advances in fabrication techniques have enabled the development of materials sculpted at the nanoscale (~10 nm). These “nano-materials” could revolutionize thermal management technologies by providing novel ways to manipulate energy propagation in solids. Atomistic simulations are critical to forging this revolution, given their ability to describe a system’s dynamics on an atom by atom basis. This topical review focuses on nonequilibrium Green’s functions (NEGF) simulations to model vibrational energy propagation at the nanoscale. NEGF is an atomistic and purely quantum mechanical approach well-suited to compute thermal transport in spatially varying systems such as “nano-materials.” This review presents the NEGF methodology from a top-to-bottom perspective, focusing on the concepts behind the mathematical expressions. We start describing the implementation of NEGF that assumes harmonic interatomic potentials (h-NEGF) and some recent advances that distinguish the transport contributions by different polarizations. This review also discusses the less common implementation of NEGF that includes the anharmonic terms of the potentials (a-NEGF), outlining existing approximations and standing challenges. Our success in tackling these challenges will determine whether we will harness the full potential of NEGF to describe thermal transport from a quantum mechanical standpoint.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.