Homa Moghadam, B. Ghalami-Choobar, Mojgan Shafaghat-Lonbar
{"title":"基于量子化学方法的三氯化磷(PCl3)和三碘化磷(PI3)液体的分子动力学模拟","authors":"Homa Moghadam, B. Ghalami-Choobar, Mojgan Shafaghat-Lonbar","doi":"10.22036/PCR.2021.241166.1798","DOIUrl":null,"url":null,"abstract":"In this study, phosphorus trichloride (PCl3) and phosphorus triiodide (PI3) as the condensed inorganic materials were investigated based on the molecular dynamics simulation. To this purpose, molecular dynamics simulations were performed by applying force field parameters derived from the quantum chemistry approach. The potential energy data were computed at the B3LYP/6-31+G (d) and B3LYP/dgdzvpd levels of theory for different configurations of PCl3 and PI3, respectively. To determine force field parameters, a four-site all-atom force field model was used to correlate the potential energy data. Therefore, the force field parameters were applied to perform the molecular dynamics simulations. The MD simulations were performed to obtain the atomic number density, enthalpy, heat capacity, and radial distribution function in the NPT and NVT ensembles for PCl3 and PI3 dimers. There is a good consistency between the experimental data and simulation results over a wide range of experimental conditions.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"9 1","pages":"509-523"},"PeriodicalIF":1.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics Simulation of Phosphorus Trichloride (PCl3) and Phosphorus Triiodide (PI3) Liquids by Using the Force-fields Derived from a Quantum Chemical Approach\",\"authors\":\"Homa Moghadam, B. Ghalami-Choobar, Mojgan Shafaghat-Lonbar\",\"doi\":\"10.22036/PCR.2021.241166.1798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, phosphorus trichloride (PCl3) and phosphorus triiodide (PI3) as the condensed inorganic materials were investigated based on the molecular dynamics simulation. To this purpose, molecular dynamics simulations were performed by applying force field parameters derived from the quantum chemistry approach. The potential energy data were computed at the B3LYP/6-31+G (d) and B3LYP/dgdzvpd levels of theory for different configurations of PCl3 and PI3, respectively. To determine force field parameters, a four-site all-atom force field model was used to correlate the potential energy data. Therefore, the force field parameters were applied to perform the molecular dynamics simulations. The MD simulations were performed to obtain the atomic number density, enthalpy, heat capacity, and radial distribution function in the NPT and NVT ensembles for PCl3 and PI3 dimers. There is a good consistency between the experimental data and simulation results over a wide range of experimental conditions.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":\"9 1\",\"pages\":\"509-523\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2021.241166.1798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2021.241166.1798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular Dynamics Simulation of Phosphorus Trichloride (PCl3) and Phosphorus Triiodide (PI3) Liquids by Using the Force-fields Derived from a Quantum Chemical Approach
In this study, phosphorus trichloride (PCl3) and phosphorus triiodide (PI3) as the condensed inorganic materials were investigated based on the molecular dynamics simulation. To this purpose, molecular dynamics simulations were performed by applying force field parameters derived from the quantum chemistry approach. The potential energy data were computed at the B3LYP/6-31+G (d) and B3LYP/dgdzvpd levels of theory for different configurations of PCl3 and PI3, respectively. To determine force field parameters, a four-site all-atom force field model was used to correlate the potential energy data. Therefore, the force field parameters were applied to perform the molecular dynamics simulations. The MD simulations were performed to obtain the atomic number density, enthalpy, heat capacity, and radial distribution function in the NPT and NVT ensembles for PCl3 and PI3 dimers. There is a good consistency between the experimental data and simulation results over a wide range of experimental conditions.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.