{"title":"气候变化时期地下变暖的来源、强度和影响","authors":"Maximilian Noethen, H. Hemmerle, P. Bayer","doi":"10.1080/10643389.2022.2083899","DOIUrl":null,"url":null,"abstract":"Abstract Anthropogenic warming of the atmosphere is one if not the most pressing challenge we face in the 21st century. While our state of knowledge on human drivers of atmospheric warming is advancing rapidly, little so can be said if we turn our view toward the Earth’s interior. Intensifying land use and atmospheric climate change condition the changing thermal state of the subsurface at different scales and intensities. Temperature is proven to be a driving factor for the quality of our largest freshwater resource: groundwater. But there is only insufficient knowledge on which sources of heat exist underground, how they relate in their intensity of subsurface warming, and which consequences this warming implies on associated environments, ecosystems and resources. In this review, we propose a differentiated classification based on (1) the geometry of the heat source, (2) the scale at which the subsurface is heated, (3) the process that generates the heat, and (4) the intention of heat release. Furthermore, we discuss the intensities of subsurface warming, the density of induced heat fluxes, as well as their abundance, and draw implications for depending processes and ecosystems in the subsurface and the potential of recycling this waste heat with geothermal installations. Graphical abstract","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"53 1","pages":"700 - 722"},"PeriodicalIF":11.4000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sources, intensities, and implications of subsurface warming in times of climate change\",\"authors\":\"Maximilian Noethen, H. Hemmerle, P. Bayer\",\"doi\":\"10.1080/10643389.2022.2083899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Anthropogenic warming of the atmosphere is one if not the most pressing challenge we face in the 21st century. While our state of knowledge on human drivers of atmospheric warming is advancing rapidly, little so can be said if we turn our view toward the Earth’s interior. Intensifying land use and atmospheric climate change condition the changing thermal state of the subsurface at different scales and intensities. Temperature is proven to be a driving factor for the quality of our largest freshwater resource: groundwater. But there is only insufficient knowledge on which sources of heat exist underground, how they relate in their intensity of subsurface warming, and which consequences this warming implies on associated environments, ecosystems and resources. In this review, we propose a differentiated classification based on (1) the geometry of the heat source, (2) the scale at which the subsurface is heated, (3) the process that generates the heat, and (4) the intention of heat release. Furthermore, we discuss the intensities of subsurface warming, the density of induced heat fluxes, as well as their abundance, and draw implications for depending processes and ecosystems in the subsurface and the potential of recycling this waste heat with geothermal installations. Graphical abstract\",\"PeriodicalId\":10823,\"journal\":{\"name\":\"Critical Reviews in Environmental Science and Technology\",\"volume\":\"53 1\",\"pages\":\"700 - 722\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10643389.2022.2083899\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2022.2083899","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Sources, intensities, and implications of subsurface warming in times of climate change
Abstract Anthropogenic warming of the atmosphere is one if not the most pressing challenge we face in the 21st century. While our state of knowledge on human drivers of atmospheric warming is advancing rapidly, little so can be said if we turn our view toward the Earth’s interior. Intensifying land use and atmospheric climate change condition the changing thermal state of the subsurface at different scales and intensities. Temperature is proven to be a driving factor for the quality of our largest freshwater resource: groundwater. But there is only insufficient knowledge on which sources of heat exist underground, how they relate in their intensity of subsurface warming, and which consequences this warming implies on associated environments, ecosystems and resources. In this review, we propose a differentiated classification based on (1) the geometry of the heat source, (2) the scale at which the subsurface is heated, (3) the process that generates the heat, and (4) the intention of heat release. Furthermore, we discuss the intensities of subsurface warming, the density of induced heat fluxes, as well as their abundance, and draw implications for depending processes and ecosystems in the subsurface and the potential of recycling this waste heat with geothermal installations. Graphical abstract
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.