{"title":"北方寒冷地区金合欢和燕麦根叶内生真菌的群落结构","authors":"Yamei Gao, Zhiwen Li, Yiqiang Han","doi":"10.14393/bj-v39n0a2023-65820","DOIUrl":null,"url":null,"abstract":"In order to explore the endophytic fungi of Fagopyrum Mill and Avena sativa, Illumina Miseq high-throughput sequencing was used to analyze the community structure and diversity of endophytic fungi in leaves and roots of buckwheat and oat at the mature stage. The results of community structure showed that there were 205 operational taxonomic units (OTUs) in buckwheat roots and 181 OTUs in buckwheat leaves based on 97% sequence similarity level. There were 152 OTUs and 127 OTUs in the root and the leaf of oat, respectively. At the phylum level, Ascomycota and Basidiomycota were the dominant endophytic fungi in buckwheat roots and leaves, while Ascomycota was the dominant endophytic fungus in oat roots and leaves. Alpha diversity analysis showed that the Ace index, Chao index and Shannon index of buckwheat roots were higher than that of buckwheat leaves, and the three indices of oat roots were also higher than that of oat leaves, indicating that the richness and diversity of endophytic fungi community in roots were higher than that in leaves. Biomarkers were found by significant difference analysis in buckwheat and oat. The endophytic functional groups of buckwheat and oat were mainly distributed in Pathotroph and Saprotroph. The results of this study laid a foundation for fully exploiting the dominant endophytic fungal resources of buckwheat and oat and further developing microbial fertilizers.","PeriodicalId":8951,"journal":{"name":"Bioscience Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Community structure of endophytic fungi in roots and leaves of Fagopyrum mill and Avena sativa in a Chinese northern cold region\",\"authors\":\"Yamei Gao, Zhiwen Li, Yiqiang Han\",\"doi\":\"10.14393/bj-v39n0a2023-65820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to explore the endophytic fungi of Fagopyrum Mill and Avena sativa, Illumina Miseq high-throughput sequencing was used to analyze the community structure and diversity of endophytic fungi in leaves and roots of buckwheat and oat at the mature stage. The results of community structure showed that there were 205 operational taxonomic units (OTUs) in buckwheat roots and 181 OTUs in buckwheat leaves based on 97% sequence similarity level. There were 152 OTUs and 127 OTUs in the root and the leaf of oat, respectively. At the phylum level, Ascomycota and Basidiomycota were the dominant endophytic fungi in buckwheat roots and leaves, while Ascomycota was the dominant endophytic fungus in oat roots and leaves. Alpha diversity analysis showed that the Ace index, Chao index and Shannon index of buckwheat roots were higher than that of buckwheat leaves, and the three indices of oat roots were also higher than that of oat leaves, indicating that the richness and diversity of endophytic fungi community in roots were higher than that in leaves. Biomarkers were found by significant difference analysis in buckwheat and oat. The endophytic functional groups of buckwheat and oat were mainly distributed in Pathotroph and Saprotroph. The results of this study laid a foundation for fully exploiting the dominant endophytic fungal resources of buckwheat and oat and further developing microbial fertilizers.\",\"PeriodicalId\":8951,\"journal\":{\"name\":\"Bioscience Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.14393/bj-v39n0a2023-65820\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14393/bj-v39n0a2023-65820","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Community structure of endophytic fungi in roots and leaves of Fagopyrum mill and Avena sativa in a Chinese northern cold region
In order to explore the endophytic fungi of Fagopyrum Mill and Avena sativa, Illumina Miseq high-throughput sequencing was used to analyze the community structure and diversity of endophytic fungi in leaves and roots of buckwheat and oat at the mature stage. The results of community structure showed that there were 205 operational taxonomic units (OTUs) in buckwheat roots and 181 OTUs in buckwheat leaves based on 97% sequence similarity level. There were 152 OTUs and 127 OTUs in the root and the leaf of oat, respectively. At the phylum level, Ascomycota and Basidiomycota were the dominant endophytic fungi in buckwheat roots and leaves, while Ascomycota was the dominant endophytic fungus in oat roots and leaves. Alpha diversity analysis showed that the Ace index, Chao index and Shannon index of buckwheat roots were higher than that of buckwheat leaves, and the three indices of oat roots were also higher than that of oat leaves, indicating that the richness and diversity of endophytic fungi community in roots were higher than that in leaves. Biomarkers were found by significant difference analysis in buckwheat and oat. The endophytic functional groups of buckwheat and oat were mainly distributed in Pathotroph and Saprotroph. The results of this study laid a foundation for fully exploiting the dominant endophytic fungal resources of buckwheat and oat and further developing microbial fertilizers.
Bioscience JournalAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
1.00
自引率
0.00%
发文量
90
审稿时长
48 weeks
期刊介绍:
The Bioscience Journal is an interdisciplinary electronic journal that publishes scientific articles in the areas of Agricultural Sciences, Biological Sciences and Health Sciences. Its mission is to disseminate new knowledge while contributing to the development of science in the country and in the world. The journal is published in a continuous flow, in English. The opinions and concepts expressed in the published articles are the sole responsibility of their authors.