Shengyuan Zhang, Yiyue Cao, Peibin Wang, Jing Jin, Liang Deng
{"title":"模拟火灾现场烟雾中Q235钢腐蚀层的演变","authors":"Shengyuan Zhang, Yiyue Cao, Peibin Wang, Jing Jin, Liang Deng","doi":"10.1002/fam.3174","DOIUrl":null,"url":null,"abstract":"<p>The ability to accurately identify fire patterns is the fundamental requirement for fire investigations. The corrosion layers of steel in fire scenes exhibit three distinct characteristics. First, due to steel's nonflammable nature, steel patterns can be preserved better at the fire site than patterns formed on other combustible materials; second, both the high temperature and the smoke during the fire affect the high-temperature oxidation process; and third, the corrosion layer of steels inevitably undergoes further evolution after the fire because of the subsequent room-temperature corrosion. This study focuses on investigating Q235 steel because of its extensive use in construction and vehicles. The pattern evolution processes of high-temperature oxidation at elevated temperatures in air, polyethylene (PE), and polyvinyl-chloride (PVC) combustion smoke and the corresponding subsequent corrosion at room temperature were systematically investigated from the perspective of macroscopic and microscopic morphology. The results showed that the smoke atmosphere played an important role in the formation of the corrosion layer of Q235 steel. Compared with samples oxidized in air, samples oxidized in PE combustion smoke exhibited a uniform and dense oxide layer on the surface, which inhibited the corrosion at room temperature further. The PVC combustion smoke accelerated the high-temperature oxidation of the sample, and its influence on the subsequent room-temperature oxidation process was closely correlated with the temperature of the high-temperature oxidation. The results of this study provide important references for understanding the formation of the corrosion layer of Q235 steel for fire investigations.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 2","pages":"155-165"},"PeriodicalIF":2.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of the corrosion layer of Q235 steel in simulated fire-scene smoke\",\"authors\":\"Shengyuan Zhang, Yiyue Cao, Peibin Wang, Jing Jin, Liang Deng\",\"doi\":\"10.1002/fam.3174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ability to accurately identify fire patterns is the fundamental requirement for fire investigations. The corrosion layers of steel in fire scenes exhibit three distinct characteristics. First, due to steel's nonflammable nature, steel patterns can be preserved better at the fire site than patterns formed on other combustible materials; second, both the high temperature and the smoke during the fire affect the high-temperature oxidation process; and third, the corrosion layer of steels inevitably undergoes further evolution after the fire because of the subsequent room-temperature corrosion. This study focuses on investigating Q235 steel because of its extensive use in construction and vehicles. The pattern evolution processes of high-temperature oxidation at elevated temperatures in air, polyethylene (PE), and polyvinyl-chloride (PVC) combustion smoke and the corresponding subsequent corrosion at room temperature were systematically investigated from the perspective of macroscopic and microscopic morphology. The results showed that the smoke atmosphere played an important role in the formation of the corrosion layer of Q235 steel. Compared with samples oxidized in air, samples oxidized in PE combustion smoke exhibited a uniform and dense oxide layer on the surface, which inhibited the corrosion at room temperature further. The PVC combustion smoke accelerated the high-temperature oxidation of the sample, and its influence on the subsequent room-temperature oxidation process was closely correlated with the temperature of the high-temperature oxidation. The results of this study provide important references for understanding the formation of the corrosion layer of Q235 steel for fire investigations.</p>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"48 2\",\"pages\":\"155-165\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3174\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3174","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Evolution of the corrosion layer of Q235 steel in simulated fire-scene smoke
The ability to accurately identify fire patterns is the fundamental requirement for fire investigations. The corrosion layers of steel in fire scenes exhibit three distinct characteristics. First, due to steel's nonflammable nature, steel patterns can be preserved better at the fire site than patterns formed on other combustible materials; second, both the high temperature and the smoke during the fire affect the high-temperature oxidation process; and third, the corrosion layer of steels inevitably undergoes further evolution after the fire because of the subsequent room-temperature corrosion. This study focuses on investigating Q235 steel because of its extensive use in construction and vehicles. The pattern evolution processes of high-temperature oxidation at elevated temperatures in air, polyethylene (PE), and polyvinyl-chloride (PVC) combustion smoke and the corresponding subsequent corrosion at room temperature were systematically investigated from the perspective of macroscopic and microscopic morphology. The results showed that the smoke atmosphere played an important role in the formation of the corrosion layer of Q235 steel. Compared with samples oxidized in air, samples oxidized in PE combustion smoke exhibited a uniform and dense oxide layer on the surface, which inhibited the corrosion at room temperature further. The PVC combustion smoke accelerated the high-temperature oxidation of the sample, and its influence on the subsequent room-temperature oxidation process was closely correlated with the temperature of the high-temperature oxidation. The results of this study provide important references for understanding the formation of the corrosion layer of Q235 steel for fire investigations.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.