基于PCA和Fisherface互补双特征提取的人耳图像识别方法

Yang Wang, Ke Cheng, Shenghui Zhao, Xu E
{"title":"基于PCA和Fisherface互补双特征提取的人耳图像识别方法","authors":"Yang Wang, Ke Cheng, Shenghui Zhao, Xu E","doi":"10.37965/jait.2022.0146","DOIUrl":null,"url":null,"abstract":"Ear recognition is a new kind of biometric identification technology now. Feature extraction is a key step in pattern recognition technology, which determines the accuracy of classification results. The method of single feature extraction can achieve high recognition rate under certain conditions, but the use of double feature extraction can overcome the limitation of single feature extraction. In order to improve the accuracy of classification results, this paper proposes a new method, that is, the method of complementary double feature extraction based on PCA and Fisherface, and we apply it to human ear image recognition. Experimental results on the ear image database provided by Beijing University of Science and Technology show that the ear recognition rate of the proposed method is significantly higher than the single feature extraction using PCA, Fisherface or ICA alone.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Human Ear Image Recognition Method Using PCA and Fisherface Complementary Double Feature Extraction\",\"authors\":\"Yang Wang, Ke Cheng, Shenghui Zhao, Xu E\",\"doi\":\"10.37965/jait.2022.0146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ear recognition is a new kind of biometric identification technology now. Feature extraction is a key step in pattern recognition technology, which determines the accuracy of classification results. The method of single feature extraction can achieve high recognition rate under certain conditions, but the use of double feature extraction can overcome the limitation of single feature extraction. In order to improve the accuracy of classification results, this paper proposes a new method, that is, the method of complementary double feature extraction based on PCA and Fisherface, and we apply it to human ear image recognition. Experimental results on the ear image database provided by Beijing University of Science and Technology show that the ear recognition rate of the proposed method is significantly higher than the single feature extraction using PCA, Fisherface or ICA alone.\",\"PeriodicalId\":70996,\"journal\":{\"name\":\"人工智能技术学报(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"人工智能技术学报(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.37965/jait.2022.0146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2022.0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

耳朵识别是目前一种新型的生物识别技术。特征提取是模式识别技术中的一个关键步骤,它决定了分类结果的准确性。单特征提取方法在一定条件下可以达到较高的识别率,但双特征提取可以克服单特征提取的局限性。为了提高分类结果的准确性,本文提出了一种新的方法,即基于PCA和Fisherface的互补双特征提取方法,并将其应用于人耳图像识别。在北京科技大学提供的耳朵图像数据库上的实验结果表明,该方法的耳朵识别率明显高于单独使用PCA、Fisherface或ICA的单一特征提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Ear Image Recognition Method Using PCA and Fisherface Complementary Double Feature Extraction
Ear recognition is a new kind of biometric identification technology now. Feature extraction is a key step in pattern recognition technology, which determines the accuracy of classification results. The method of single feature extraction can achieve high recognition rate under certain conditions, but the use of double feature extraction can overcome the limitation of single feature extraction. In order to improve the accuracy of classification results, this paper proposes a new method, that is, the method of complementary double feature extraction based on PCA and Fisherface, and we apply it to human ear image recognition. Experimental results on the ear image database provided by Beijing University of Science and Technology show that the ear recognition rate of the proposed method is significantly higher than the single feature extraction using PCA, Fisherface or ICA alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Detection of Streaks in Astronomical Images Using Machine Learning An Optimal BDCNN ML Architecture for Car Make Model Prediction A Bio-Inspired Method For Breast Histopathology Image Classification Using Transfer Learning Convolutional Neural Networks for Automated Diagnosis of Diabetic Retinopathy in Fundus Images Automated Staging and Grading for Retinopathy of Prematurity on Indian Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1