带小翼和涡发生器机翼的空气动力学分析

A. Hasan, Nasr M. Al-Khudhiri, M. A. Iqbal, S. Dol, A. A. Azeez, M. Gadala
{"title":"带小翼和涡发生器机翼的空气动力学分析","authors":"A. Hasan, Nasr M. Al-Khudhiri, M. A. Iqbal, S. Dol, A. A. Azeez, M. Gadala","doi":"10.37394/232013.2020.15.19","DOIUrl":null,"url":null,"abstract":"This project was based on the principle of designing, simulating and developing an inexpensive, aerodynamically efficient and regular class electric powered RC aircraft. This prototype was designed to have the maximum strength to weight ratio with minimum drag coefficient (and highest lift coefficient). Moreover, all constraints provided by SAE International competition were followed. The investigation was conducted for the complete airplane and for wing optimization. The model was numerically investigated with ANSYS Fluent 16.1 through the SST K-Omega turbulence model at Reynolds number of 360,000. Once the results were obtained, model and result verification were done by wind tunnel test to validate the data. It was concluded that the airplane with 45° winglet has the highest lift force with minimal drag and 45° winglet was further modified with rectangular and triangular vortex generators in order to further enhance its aerodynamic efficiency for a range of Angle of Attacks (AOA).","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Aerodynamics Analysis on Wings with Winglets and Vortex Generators\",\"authors\":\"A. Hasan, Nasr M. Al-Khudhiri, M. A. Iqbal, S. Dol, A. A. Azeez, M. Gadala\",\"doi\":\"10.37394/232013.2020.15.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project was based on the principle of designing, simulating and developing an inexpensive, aerodynamically efficient and regular class electric powered RC aircraft. This prototype was designed to have the maximum strength to weight ratio with minimum drag coefficient (and highest lift coefficient). Moreover, all constraints provided by SAE International competition were followed. The investigation was conducted for the complete airplane and for wing optimization. The model was numerically investigated with ANSYS Fluent 16.1 through the SST K-Omega turbulence model at Reynolds number of 360,000. Once the results were obtained, model and result verification were done by wind tunnel test to validate the data. It was concluded that the airplane with 45° winglet has the highest lift force with minimal drag and 45° winglet was further modified with rectangular and triangular vortex generators in order to further enhance its aerodynamic efficiency for a range of Angle of Attacks (AOA).\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232013.2020.15.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2020.15.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

这个项目是基于设计、模拟和开发一种廉价的、空气动力学效率高的常规级电动遥控飞机的原则。这款原型车被设计成具有最大的强度重量比和最小的阻力系数(以及最高的升力系数)。此外,还遵循了SAE国际竞赛的所有约束条件。该研究是针对整架飞机和机翼优化进行的。利用ANSYS Fluent 16.1软件,采用雷诺数为36万的SST K-Omega湍流模型对模型进行数值研究。得到结果后,通过风洞试验对模型和结果进行验证,对数据进行验证。结果表明,45°小翼具有最大的升力和最小的阻力,并对45°小翼进行了矩形和三角形涡发生器的改进,以进一步提高其在迎角范围内的气动效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerodynamics Analysis on Wings with Winglets and Vortex Generators
This project was based on the principle of designing, simulating and developing an inexpensive, aerodynamically efficient and regular class electric powered RC aircraft. This prototype was designed to have the maximum strength to weight ratio with minimum drag coefficient (and highest lift coefficient). Moreover, all constraints provided by SAE International competition were followed. The investigation was conducted for the complete airplane and for wing optimization. The model was numerically investigated with ANSYS Fluent 16.1 through the SST K-Omega turbulence model at Reynolds number of 360,000. Once the results were obtained, model and result verification were done by wind tunnel test to validate the data. It was concluded that the airplane with 45° winglet has the highest lift force with minimal drag and 45° winglet was further modified with rectangular and triangular vortex generators in order to further enhance its aerodynamic efficiency for a range of Angle of Attacks (AOA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
Wind Velocity Effect on the Aerodynamic and Acoustic Behavior of a Vertical Axis Wind Turbine Aerodynamics Analysis Comparison between NACA 4412 and NREL S823 Airfoils Influence of Chemical and Radiation on an Unsteady MHD Oscillatory Flow using Artificial Neural Network (ANN) Non-Fourier Heat Flux Model for the Magnetohydrodynamic Casson Nanofluid Flow Past a Porous Stretching Sheet using the Akbari-Gangi Method Suspended Mooring Line Static Analysis using Internal XFlow Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1