增强用户体验质量的意图驱动的DaaS管理框架

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet Technology Pub Date : 2022-11-14 DOI:10.1145/3488586
Chaofeng Wu, Shingo Horiuchi, Kenji Murase, Hiroaki Kikushima, Kenichi Tayama
{"title":"增强用户体验质量的意图驱动的DaaS管理框架","authors":"Chaofeng Wu, Shingo Horiuchi, Kenji Murase, Hiroaki Kikushima, Kenichi Tayama","doi":"10.1145/3488586","DOIUrl":null,"url":null,"abstract":"Desktop as a Service (DaaS) has become widely used by enterprises. In 2020, the use of DaaS increased dramatically due to the demand to work remotely from home during the COVID-19 pandemic. The DaaS market is expected to continue growing rapidly [1]. The quality of experience (QoE) of a DaaS service has been one of the main factors to enhance DaaS user satisfaction. To ensure user QoE, the amount of cloud computation resources for a DaaS service must be appropriately designed. We propose an Intent-driven DaaS Management (IDM) framework to autonomously determine the cloud-resource-amount configurations for a given DaaS QoE requirement. IDM enables autonomous resource design by abstracting the knowledge about the dependency between DaaS workload, resource configuration, and performance from previous DaaS performance log data. To ensure the IDM framework's applicability to actual DaaS services, we analyzed five main challenges in applying the IDM framework to actual DaaS services: identifying the resource-design objective, quantifying DaaS QoE, addressing low log data availability, designing performance-inference models, and addressing low resource variations in the log data. We addressed these challenges through detailed designing of IDM modules. The effectiveness of the IDM framework was assessed from the aspects of DaaS performance-inference precision, DaaS resource design, and time and human-resource cost reduction.","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":" ","pages":"1 - 25"},"PeriodicalIF":3.9000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Intent-driven DaaS Management Framework to Enhance User Quality of Experience\",\"authors\":\"Chaofeng Wu, Shingo Horiuchi, Kenji Murase, Hiroaki Kikushima, Kenichi Tayama\",\"doi\":\"10.1145/3488586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Desktop as a Service (DaaS) has become widely used by enterprises. In 2020, the use of DaaS increased dramatically due to the demand to work remotely from home during the COVID-19 pandemic. The DaaS market is expected to continue growing rapidly [1]. The quality of experience (QoE) of a DaaS service has been one of the main factors to enhance DaaS user satisfaction. To ensure user QoE, the amount of cloud computation resources for a DaaS service must be appropriately designed. We propose an Intent-driven DaaS Management (IDM) framework to autonomously determine the cloud-resource-amount configurations for a given DaaS QoE requirement. IDM enables autonomous resource design by abstracting the knowledge about the dependency between DaaS workload, resource configuration, and performance from previous DaaS performance log data. To ensure the IDM framework's applicability to actual DaaS services, we analyzed five main challenges in applying the IDM framework to actual DaaS services: identifying the resource-design objective, quantifying DaaS QoE, addressing low log data availability, designing performance-inference models, and addressing low resource variations in the log data. We addressed these challenges through detailed designing of IDM modules. The effectiveness of the IDM framework was assessed from the aspects of DaaS performance-inference precision, DaaS resource design, and time and human-resource cost reduction.\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\" \",\"pages\":\"1 - 25\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3488586\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3488586","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

桌面即服务(DaaS)已被企业广泛使用。2020年,由于新冠肺炎大流行期间在家远程工作的需求,DaaS的使用大幅增加。DaaS市场预计将继续快速增长[1]。DaaS服务的体验质量(QoE)一直是提高DaaS用户满意度的主要因素之一。为了确保用户QoE,必须适当设计DaaS服务的云计算资源量。我们提出了一个意向驱动的DaaS管理(IDM)框架,以自主确定给定DaaS QoE需求的云资源量配置。IDM通过从以前的DaaS性能日志数据中抽象出关于DaaS工作负载、资源配置和性能之间依赖关系的知识,实现了自主资源设计。为了确保IDM框架适用于实际的DaaS服务,我们分析了将IDM框架应用于实际DaaS服务的五个主要挑战:确定资源设计目标、量化DaaS QoE、解决日志数据可用性低的问题、设计性能推断模型以及解决日志数据中资源变化低的问题。我们通过IDM模块的详细设计解决了这些挑战。从DaaS性能推理精度、DaaS资源设计、时间和人力资源成本降低等方面评估了IDM框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Intent-driven DaaS Management Framework to Enhance User Quality of Experience
Desktop as a Service (DaaS) has become widely used by enterprises. In 2020, the use of DaaS increased dramatically due to the demand to work remotely from home during the COVID-19 pandemic. The DaaS market is expected to continue growing rapidly [1]. The quality of experience (QoE) of a DaaS service has been one of the main factors to enhance DaaS user satisfaction. To ensure user QoE, the amount of cloud computation resources for a DaaS service must be appropriately designed. We propose an Intent-driven DaaS Management (IDM) framework to autonomously determine the cloud-resource-amount configurations for a given DaaS QoE requirement. IDM enables autonomous resource design by abstracting the knowledge about the dependency between DaaS workload, resource configuration, and performance from previous DaaS performance log data. To ensure the IDM framework's applicability to actual DaaS services, we analyzed five main challenges in applying the IDM framework to actual DaaS services: identifying the resource-design objective, quantifying DaaS QoE, addressing low log data availability, designing performance-inference models, and addressing low resource variations in the log data. We addressed these challenges through detailed designing of IDM modules. The effectiveness of the IDM framework was assessed from the aspects of DaaS performance-inference precision, DaaS resource design, and time and human-resource cost reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Internet Technology
ACM Transactions on Internet Technology 工程技术-计算机:软件工程
CiteScore
10.30
自引率
1.90%
发文量
137
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.
期刊最新文献
Interpersonal Communication Interconnection in Media Convergence Metaverse Using Reinforcement Learning and Error Models for Drone Precision Landing Towards Human-AI Teaming to Mitigate Alert Fatigue in Security Operations Centres RESP: A Recursive Clustering Approach for Edge Server Placement in Mobile Edge Computing OTI-IoT: A Blockchain-based Operational Threat Intelligence Framework for Multi-vector DDoS Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1