用于构音障碍患者的自动扬声器验证系统

Shinimol Salim, S. Shahnawazuddin, Waquar Ahmad
{"title":"用于构音障碍患者的自动扬声器验证系统","authors":"Shinimol Salim, S. Shahnawazuddin, Waquar Ahmad","doi":"10.21437/interspeech.2022-375","DOIUrl":null,"url":null,"abstract":"Dysarthria is one of the most common speech communication disorder associate with a neurological damage that weakens the muscles necessary for speech. In this paper, we present our efforts towards developing an automatic speaker verification (ASV) system based on x -vectors for dysarthric speakers with varying speech intelligibility (low, medium and high). For that purpose, a baseline ASV system was trained on speech data from healthy speakers since there is severe scarcity of data from dysarthric speakers. To improve the performance with respect to dysarthric speakers, data augmentation based on duration modification is proposed in this study. Duration modification with several scaling factors was applied to healthy training speech. An ASV system was then trained on healthy speech augmented with its duration modified versions. It compen-sates for the substantial disparities in phone duration between normal and dysarthric speakers of varying speech intelligibilty. Experiment evaluations presented in this study show that proposed duration-modification-based data augmentation resulted in a relative improvement of 22% over the baseline. Further to that, a relative improvement of 26% was obtained in the case of speakers with high severity level of dysarthria.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"5070-5074"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Speaker Verification System for Dysarthria Patients\",\"authors\":\"Shinimol Salim, S. Shahnawazuddin, Waquar Ahmad\",\"doi\":\"10.21437/interspeech.2022-375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dysarthria is one of the most common speech communication disorder associate with a neurological damage that weakens the muscles necessary for speech. In this paper, we present our efforts towards developing an automatic speaker verification (ASV) system based on x -vectors for dysarthric speakers with varying speech intelligibility (low, medium and high). For that purpose, a baseline ASV system was trained on speech data from healthy speakers since there is severe scarcity of data from dysarthric speakers. To improve the performance with respect to dysarthric speakers, data augmentation based on duration modification is proposed in this study. Duration modification with several scaling factors was applied to healthy training speech. An ASV system was then trained on healthy speech augmented with its duration modified versions. It compen-sates for the substantial disparities in phone duration between normal and dysarthric speakers of varying speech intelligibilty. Experiment evaluations presented in this study show that proposed duration-modification-based data augmentation resulted in a relative improvement of 22% over the baseline. Further to that, a relative improvement of 26% was obtained in the case of speakers with high severity level of dysarthria.\",\"PeriodicalId\":73500,\"journal\":{\"name\":\"Interspeech\",\"volume\":\"1 1\",\"pages\":\"5070-5074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interspeech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/interspeech.2022-375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

构音障碍是最常见的言语交流障碍之一,与削弱言语所需肌肉的神经损伤有关。在本文中,我们致力于开发一个基于x向量的自动说话人验证(ASV)系统,用于不同语音清晰度(低、中、高)的构音障碍说话人。为此,基线ASV系统是根据健康说话者的语音数据进行训练的,因为严重缺乏构音障碍说话者的数据。为了提高构音障碍说话者的表现,本研究提出了基于持续时间修改的数据增强。将几个比例因子的时长修正应用于健康训练语音。然后对ASV系统进行了健康语音训练,并对其持续时间进行了修改。它弥补了不同语音清晰度的正常和构音障碍说话者之间电话持续时间的巨大差异。本研究中的实验评估表明,所提出的基于持续时间修改的数据增强比基线相对提高了22%。此外,在具有高严重程度构音障碍的说话者的情况下,获得了26%的相对改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Speaker Verification System for Dysarthria Patients
Dysarthria is one of the most common speech communication disorder associate with a neurological damage that weakens the muscles necessary for speech. In this paper, we present our efforts towards developing an automatic speaker verification (ASV) system based on x -vectors for dysarthric speakers with varying speech intelligibility (low, medium and high). For that purpose, a baseline ASV system was trained on speech data from healthy speakers since there is severe scarcity of data from dysarthric speakers. To improve the performance with respect to dysarthric speakers, data augmentation based on duration modification is proposed in this study. Duration modification with several scaling factors was applied to healthy training speech. An ASV system was then trained on healthy speech augmented with its duration modified versions. It compen-sates for the substantial disparities in phone duration between normal and dysarthric speakers of varying speech intelligibilty. Experiment evaluations presented in this study show that proposed duration-modification-based data augmentation resulted in a relative improvement of 22% over the baseline. Further to that, a relative improvement of 26% was obtained in the case of speakers with high severity level of dysarthria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1