{"title":"流行病学体系结构方法的群体定量分析","authors":"Dephney Mathebula","doi":"10.1007/s40745-023-00493-1","DOIUrl":null,"url":null,"abstract":"<div><p>Epidemiology, the aspect of research focusing on disease modelling is date intensive. Research epidemiologists in different research groups played a key role in developing different data driven model for COVID-19 and monkeypox. The requirement of accessing highly accurate data useful for disease modelling is beneficial but not without having challenges. Currently, the task of data acquisition is executed by select individuals in different research groups. This approach experiences the drawbacks associated with getting permission to access the desired data and inflexibility to change data acquisition goals due to dynamic epidemiological research objectives. The presented research addresses these challenges and proposes the design and use of dynamic intelligent crawlers for acquiring epidemiological data related to a given goal. In addition, the research aims to quantify how the use of computing entities enhances the process of data acquisition in epidemiological related studies. This is done by formulating and investigating the metrics of the data acquisition efficiency and the data analytics efficiency. The use of human assisted crawlers in the global information networks is found to enhance data acquisition efficiency (DAqE) and data analytics efficiency (DAnE). The use of human assisted crawlers in a hybrid configuration outperforms the case where manual research group member efforts are expended enhancing the DAqE and DAnE by up to 35% and 99% on average, respectively.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40745-023-00493-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantitative Analysis of Group for Epidemiology Architectural Approach\",\"authors\":\"Dephney Mathebula\",\"doi\":\"10.1007/s40745-023-00493-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epidemiology, the aspect of research focusing on disease modelling is date intensive. Research epidemiologists in different research groups played a key role in developing different data driven model for COVID-19 and monkeypox. The requirement of accessing highly accurate data useful for disease modelling is beneficial but not without having challenges. Currently, the task of data acquisition is executed by select individuals in different research groups. This approach experiences the drawbacks associated with getting permission to access the desired data and inflexibility to change data acquisition goals due to dynamic epidemiological research objectives. The presented research addresses these challenges and proposes the design and use of dynamic intelligent crawlers for acquiring epidemiological data related to a given goal. In addition, the research aims to quantify how the use of computing entities enhances the process of data acquisition in epidemiological related studies. This is done by formulating and investigating the metrics of the data acquisition efficiency and the data analytics efficiency. The use of human assisted crawlers in the global information networks is found to enhance data acquisition efficiency (DAqE) and data analytics efficiency (DAnE). The use of human assisted crawlers in a hybrid configuration outperforms the case where manual research group member efforts are expended enhancing the DAqE and DAnE by up to 35% and 99% on average, respectively.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40745-023-00493-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-023-00493-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00493-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Quantitative Analysis of Group for Epidemiology Architectural Approach
Epidemiology, the aspect of research focusing on disease modelling is date intensive. Research epidemiologists in different research groups played a key role in developing different data driven model for COVID-19 and monkeypox. The requirement of accessing highly accurate data useful for disease modelling is beneficial but not without having challenges. Currently, the task of data acquisition is executed by select individuals in different research groups. This approach experiences the drawbacks associated with getting permission to access the desired data and inflexibility to change data acquisition goals due to dynamic epidemiological research objectives. The presented research addresses these challenges and proposes the design and use of dynamic intelligent crawlers for acquiring epidemiological data related to a given goal. In addition, the research aims to quantify how the use of computing entities enhances the process of data acquisition in epidemiological related studies. This is done by formulating and investigating the metrics of the data acquisition efficiency and the data analytics efficiency. The use of human assisted crawlers in the global information networks is found to enhance data acquisition efficiency (DAqE) and data analytics efficiency (DAnE). The use of human assisted crawlers in a hybrid configuration outperforms the case where manual research group member efforts are expended enhancing the DAqE and DAnE by up to 35% and 99% on average, respectively.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.