H. Yasuda, B. Nandintsetseg, R. Berndtsson, G. Amgalan, M. Shinoda, T. Kawai
{"title":"海洋海温偶极子对蒙古夏季降水的影响","authors":"H. Yasuda, B. Nandintsetseg, R. Berndtsson, G. Amgalan, M. Shinoda, T. Kawai","doi":"10.15233/GFZ.2017.34.10","DOIUrl":null,"url":null,"abstract":"Cross-correlations between inter-annual summer rainfall time series (June to August: JJA) for arid Mongolia and global sea surface temperatures (GSST) were calculated for prediction purposes. Prediction of summer rainfall for four vegetation zones, Desert Steppe (DS), Steppe (ST), Forest Steppe (FS), and High Mountain (HM) using GSSTs for time lags of 5, 6, and 7 months prior to JJA rainfall was evaluated. Mongolian summer rainfall is correlated with global SSTs. In particular, the summer rainfall of FS and HM displayed high and statistically sigtime series of the SST differences between SST dipoles (positive – negative) with the summer rainfall time series was larger than the original correlations. To preused. Time series of the SST difference that represents the strength of the dipole were used as input to the ANN model, and Mongolian summer rainfall was predicted 5, 6, and 7 months ahead in time. The predicted summer rainfall compared reasonably well with the observed rainfall in the four different vegetation zones. This implies that the model can be used to predict summer rainfall for the four main Mongolian vegetation zones with good accuracy.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"34 1","pages":"199-218"},"PeriodicalIF":0.9000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The effects of ocean SST dipole on Mongolian summer rainfall\",\"authors\":\"H. Yasuda, B. Nandintsetseg, R. Berndtsson, G. Amgalan, M. Shinoda, T. Kawai\",\"doi\":\"10.15233/GFZ.2017.34.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-correlations between inter-annual summer rainfall time series (June to August: JJA) for arid Mongolia and global sea surface temperatures (GSST) were calculated for prediction purposes. Prediction of summer rainfall for four vegetation zones, Desert Steppe (DS), Steppe (ST), Forest Steppe (FS), and High Mountain (HM) using GSSTs for time lags of 5, 6, and 7 months prior to JJA rainfall was evaluated. Mongolian summer rainfall is correlated with global SSTs. In particular, the summer rainfall of FS and HM displayed high and statistically sigtime series of the SST differences between SST dipoles (positive – negative) with the summer rainfall time series was larger than the original correlations. To preused. Time series of the SST difference that represents the strength of the dipole were used as input to the ANN model, and Mongolian summer rainfall was predicted 5, 6, and 7 months ahead in time. The predicted summer rainfall compared reasonably well with the observed rainfall in the four different vegetation zones. This implies that the model can be used to predict summer rainfall for the four main Mongolian vegetation zones with good accuracy.\",\"PeriodicalId\":50419,\"journal\":{\"name\":\"Geofizika\",\"volume\":\"34 1\",\"pages\":\"199-218\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofizika\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15233/GFZ.2017.34.10\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizika","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15233/GFZ.2017.34.10","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The effects of ocean SST dipole on Mongolian summer rainfall
Cross-correlations between inter-annual summer rainfall time series (June to August: JJA) for arid Mongolia and global sea surface temperatures (GSST) were calculated for prediction purposes. Prediction of summer rainfall for four vegetation zones, Desert Steppe (DS), Steppe (ST), Forest Steppe (FS), and High Mountain (HM) using GSSTs for time lags of 5, 6, and 7 months prior to JJA rainfall was evaluated. Mongolian summer rainfall is correlated with global SSTs. In particular, the summer rainfall of FS and HM displayed high and statistically sigtime series of the SST differences between SST dipoles (positive – negative) with the summer rainfall time series was larger than the original correlations. To preused. Time series of the SST difference that represents the strength of the dipole were used as input to the ANN model, and Mongolian summer rainfall was predicted 5, 6, and 7 months ahead in time. The predicted summer rainfall compared reasonably well with the observed rainfall in the four different vegetation zones. This implies that the model can be used to predict summer rainfall for the four main Mongolian vegetation zones with good accuracy.
期刊介绍:
The Geofizika journal succeeds the Papers series (Radovi), which has been published since 1923 at the Geophysical Institute in Zagreb (current the Department of Geophysics, Faculty of Science, University of Zagreb).
Geofizika publishes contributions dealing with physics of the atmosphere, the sea and the Earth''s interior.