基于MobileNets架构的假人脸检测系统

Gabriel Indra Widi Tamtama, I. K. D. Senapartha
{"title":"基于MobileNets架构的假人脸检测系统","authors":"Gabriel Indra Widi Tamtama, I. K. D. Senapartha","doi":"10.24114/cess.v8i2.43762","DOIUrl":null,"url":null,"abstract":"Sistem pengenalan wajah merupakan salah satu metode dalam teknik biometric yang menggunakan wajah untuk proses identifikasi atau verifikasi seseorang. Teknologi ini tidak memerlukan kontak fisik seperti verifikasi sidik jari dan diklaim lebih aman karena wajah setiap orang memiliki karakter yang berbeda-beda. Terdapat dua fase utama dalam sistem biometrik wajah, yaitu deteksi wajah palsu Presentation Attack (PA) detektor dan pengenalan wajah (face recognition). Penelitian ini melakukan eksperimen dengan tujuan membangun sebuah model pembelajaran mesin (machine learning) berbasis mobile untuk melakukan deteksi wajah palsu ataupun memverifikasi keaslian wajah dengan menggunakan arsitektur Mobilenets. Verifikasi keaslian wajah diperlukan untuk meningkatkan sistem pengenalan wajah sehingga bisa membedakan wajah palsu dengan asli. Wajah palsu bisa dihadirkan dengan menunjukkan rekaman video atau gambar wajah seseorang sehingga bisa memanipulasi sistem. Dengan adanya metode verifikasi wajah asli, maka keamanan sistem bisa ditingkatkan dan meminimalisir penyalahgunaan. Kami menggunakan tiga jenis dataset publik, yaitu Replay-Mobile, Record-MPAD, dan LLC-FSAD untuk bahan training terhadap model anti-spoof yang dibangun. Model anti-spoof wajah dibangun dengan menggunakan arsitektur MobilenetV2 dengan menambahkan 3 layer neural network yang digunakan sebagai layer klasifikasi. Kemudian pengujian secara terkontrol dilakukan dengan menggunakan program komputer menghasilkan nilai HTER 0.17. Sedangkan hasil pengujian secara tidak terkontrol menggunakan aplikasi prototipe Android menghasilkan nilai HTER sebesar 0.21. Hasil pengujian ini menghasilkan selisih nilai HTER sebesar 0.04 yang mengindikasikan bahwa model anti-spoof wajah akan memiliki performa yang cenderung menurun bila digunakan secara real. The facial recognition system is a method in biometric techniques that use faces to identify or verify a person. This technology does not require physical contact such as fingerprint verification and is claimed to be safer because everyone's face has a different character. There are two main phases in the facial biometric system, namely fake face detection (Presentation Attack (PA) detector) and facial recognition. This study conducted experiments with the aim of building a mobile-based machine learning model to detect fake faces or verify facial authenticity using the MobileNets architecture. Verification of facial authenticity is needed to improve the facial recognition system so that it can distinguish fake faces from real ones. Fake faces can be presented by showing video recordings or pictures of someone's face so they can manipulate the system. The real-face verification method can improve system security and minimize misuse. We use three types of public datasets, namely Replay-Mobile, Record-MPAD, and LLC-FSAD for training materials for the built anti-spoof model. The facial anti-spoof model is built using the MobilenetV2 architecture by adding 3 neural network layers which are used as classification layers. Then controlled testing was carried out using a computer program to produce an HTER value of 0.17. While the results of uncontrolled testing using the Android prototype application produce an HTER value of 0.21. The results of this test produce a difference in the HTER value of 0.04, indicating that the facial anti-spoof model will have performance that tends to decrease when used in real terms.","PeriodicalId":53361,"journal":{"name":"CESS Journal of Computer Engineering System and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fake Face Detection System Using MobileNets Architecture\",\"authors\":\"Gabriel Indra Widi Tamtama, I. K. D. Senapartha\",\"doi\":\"10.24114/cess.v8i2.43762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sistem pengenalan wajah merupakan salah satu metode dalam teknik biometric yang menggunakan wajah untuk proses identifikasi atau verifikasi seseorang. Teknologi ini tidak memerlukan kontak fisik seperti verifikasi sidik jari dan diklaim lebih aman karena wajah setiap orang memiliki karakter yang berbeda-beda. Terdapat dua fase utama dalam sistem biometrik wajah, yaitu deteksi wajah palsu Presentation Attack (PA) detektor dan pengenalan wajah (face recognition). Penelitian ini melakukan eksperimen dengan tujuan membangun sebuah model pembelajaran mesin (machine learning) berbasis mobile untuk melakukan deteksi wajah palsu ataupun memverifikasi keaslian wajah dengan menggunakan arsitektur Mobilenets. Verifikasi keaslian wajah diperlukan untuk meningkatkan sistem pengenalan wajah sehingga bisa membedakan wajah palsu dengan asli. Wajah palsu bisa dihadirkan dengan menunjukkan rekaman video atau gambar wajah seseorang sehingga bisa memanipulasi sistem. Dengan adanya metode verifikasi wajah asli, maka keamanan sistem bisa ditingkatkan dan meminimalisir penyalahgunaan. Kami menggunakan tiga jenis dataset publik, yaitu Replay-Mobile, Record-MPAD, dan LLC-FSAD untuk bahan training terhadap model anti-spoof yang dibangun. Model anti-spoof wajah dibangun dengan menggunakan arsitektur MobilenetV2 dengan menambahkan 3 layer neural network yang digunakan sebagai layer klasifikasi. Kemudian pengujian secara terkontrol dilakukan dengan menggunakan program komputer menghasilkan nilai HTER 0.17. Sedangkan hasil pengujian secara tidak terkontrol menggunakan aplikasi prototipe Android menghasilkan nilai HTER sebesar 0.21. Hasil pengujian ini menghasilkan selisih nilai HTER sebesar 0.04 yang mengindikasikan bahwa model anti-spoof wajah akan memiliki performa yang cenderung menurun bila digunakan secara real. The facial recognition system is a method in biometric techniques that use faces to identify or verify a person. This technology does not require physical contact such as fingerprint verification and is claimed to be safer because everyone's face has a different character. There are two main phases in the facial biometric system, namely fake face detection (Presentation Attack (PA) detector) and facial recognition. This study conducted experiments with the aim of building a mobile-based machine learning model to detect fake faces or verify facial authenticity using the MobileNets architecture. Verification of facial authenticity is needed to improve the facial recognition system so that it can distinguish fake faces from real ones. Fake faces can be presented by showing video recordings or pictures of someone's face so they can manipulate the system. The real-face verification method can improve system security and minimize misuse. We use three types of public datasets, namely Replay-Mobile, Record-MPAD, and LLC-FSAD for training materials for the built anti-spoof model. The facial anti-spoof model is built using the MobilenetV2 architecture by adding 3 neural network layers which are used as classification layers. Then controlled testing was carried out using a computer program to produce an HTER value of 0.17. While the results of uncontrolled testing using the Android prototype application produce an HTER value of 0.21. The results of this test produce a difference in the HTER value of 0.04, indicating that the facial anti-spoof model will have performance that tends to decrease when used in real terms.\",\"PeriodicalId\":53361,\"journal\":{\"name\":\"CESS Journal of Computer Engineering System and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CESS Journal of Computer Engineering System and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/cess.v8i2.43762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESS Journal of Computer Engineering System and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/cess.v8i2.43762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部识别系统是生物识别技术的一种方法,该技术使用面部进行识别或验证。该技术不需要进行身体接触,如指纹验证和认证,因为每个人的面部都有不同的特征,因此更安全。生物识别面部系统有两个主要阶段,即对面部入侵检测和面部识别。该研究的目的是建立一种基于移动学习模式的机器学习模型,通过使用移动建筑来进行假面部检测或验证真实的面部。需要对面部真实性进行验证,以增强面部识别系统,以便能够区分真假。假脸可以通过播放一段视频或一张可以操纵系统的脸来呈现。有了原始的面部验证方法,系统安全可以升级和最小化滥用。我们使用三种公共数据集,即移动排版、录音mpad和LLC-FSAD,用于训练防防模型。反光面模型是用mobilenet2架构添加3层神经网络作为分类层构建的。然后使用计算机程序进行控制测试,产生HTER 0.17的值。而使用Android原型应用程序的测试结果会导致0.21的HTER值。这些测试结果显示,HTER值为0.04的差异表明,面部防刮模型在实际使用时表现较低。面部识别系统是一种生物识别技术的方法,它用脸来识别或验证一个人。这种技术不要求像指纹验证那样精确,也不要求被拯救,因为每个人的脸都有不同的特征。生物识别系统有两个主要阶段,namely假面部检测和面部识别识别。这一研究是通过建造一个基于汽车学习机器的模型来检测假脸或验证面部识别的研究成果的实验。面部识别的验证需要放大面部识别系统,这样它就可以从真实的人那里发出虚假的面孔。假脸可以由某人的脸的视频记录或图片展示,这样他们就可以操纵系统。实际面验证方法可以改进安全系统和最小化。我们使用了三个公共数据组,namely replay,记录粘贴和LLC-FSAD培训材料的防防模型。面部防扩散模型是使用3个神经网络标签构建的。“然后控制测试”担心使用一台计算机程序来生产价值0.17。尽管使用Android原型应用程序生产价值0.21。这个测试的结果在h3.04值上有所不同,在这种情况下,面部防斑点模型会表现出在真实环境中使用时需要切除的症状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fake Face Detection System Using MobileNets Architecture
Sistem pengenalan wajah merupakan salah satu metode dalam teknik biometric yang menggunakan wajah untuk proses identifikasi atau verifikasi seseorang. Teknologi ini tidak memerlukan kontak fisik seperti verifikasi sidik jari dan diklaim lebih aman karena wajah setiap orang memiliki karakter yang berbeda-beda. Terdapat dua fase utama dalam sistem biometrik wajah, yaitu deteksi wajah palsu Presentation Attack (PA) detektor dan pengenalan wajah (face recognition). Penelitian ini melakukan eksperimen dengan tujuan membangun sebuah model pembelajaran mesin (machine learning) berbasis mobile untuk melakukan deteksi wajah palsu ataupun memverifikasi keaslian wajah dengan menggunakan arsitektur Mobilenets. Verifikasi keaslian wajah diperlukan untuk meningkatkan sistem pengenalan wajah sehingga bisa membedakan wajah palsu dengan asli. Wajah palsu bisa dihadirkan dengan menunjukkan rekaman video atau gambar wajah seseorang sehingga bisa memanipulasi sistem. Dengan adanya metode verifikasi wajah asli, maka keamanan sistem bisa ditingkatkan dan meminimalisir penyalahgunaan. Kami menggunakan tiga jenis dataset publik, yaitu Replay-Mobile, Record-MPAD, dan LLC-FSAD untuk bahan training terhadap model anti-spoof yang dibangun. Model anti-spoof wajah dibangun dengan menggunakan arsitektur MobilenetV2 dengan menambahkan 3 layer neural network yang digunakan sebagai layer klasifikasi. Kemudian pengujian secara terkontrol dilakukan dengan menggunakan program komputer menghasilkan nilai HTER 0.17. Sedangkan hasil pengujian secara tidak terkontrol menggunakan aplikasi prototipe Android menghasilkan nilai HTER sebesar 0.21. Hasil pengujian ini menghasilkan selisih nilai HTER sebesar 0.04 yang mengindikasikan bahwa model anti-spoof wajah akan memiliki performa yang cenderung menurun bila digunakan secara real. The facial recognition system is a method in biometric techniques that use faces to identify or verify a person. This technology does not require physical contact such as fingerprint verification and is claimed to be safer because everyone's face has a different character. There are two main phases in the facial biometric system, namely fake face detection (Presentation Attack (PA) detector) and facial recognition. This study conducted experiments with the aim of building a mobile-based machine learning model to detect fake faces or verify facial authenticity using the MobileNets architecture. Verification of facial authenticity is needed to improve the facial recognition system so that it can distinguish fake faces from real ones. Fake faces can be presented by showing video recordings or pictures of someone's face so they can manipulate the system. The real-face verification method can improve system security and minimize misuse. We use three types of public datasets, namely Replay-Mobile, Record-MPAD, and LLC-FSAD for training materials for the built anti-spoof model. The facial anti-spoof model is built using the MobilenetV2 architecture by adding 3 neural network layers which are used as classification layers. Then controlled testing was carried out using a computer program to produce an HTER value of 0.17. While the results of uncontrolled testing using the Android prototype application produce an HTER value of 0.21. The results of this test produce a difference in the HTER value of 0.04, indicating that the facial anti-spoof model will have performance that tends to decrease when used in real terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
40
审稿时长
4 weeks
期刊最新文献
Implementation of the Multimedia Development Life Cycle in Making Educational Games About Indonesia Data Mining Algorithm Decision Tree Itterative Dechotomiser 3 (ID3) for Classification of Stroke Implementation of Weight Aggregated Sum Product Assessment (WASPAS) on the Selection of Online English Course Platforms Usability of Brain Tumor Detection Using the DNN (Deep Neural Network) Method Based on Medical Image on DICOM Performance Comparison Analysis of Multi Prime RSA and Multi Power RSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1