{"title":"基于人工智能的电力工程系统变量预测研究现状","authors":"Joseline Sánchez Solís, Marvin Coto Jiménez","doi":"10.15517/eci.v12i1.47628","DOIUrl":null,"url":null,"abstract":"Existe una gran cantidad de sistemas que se estudian y desarrollan en el campo de la Ingeniería Eléctrica en los que se realizan análisis que tienen como uno de sus fines principales la predicción de sus variables, tanto para procesos de planificación como de toma de decisiones. Con el advenimiento de la Inteligencia Artificial, se ha observado cómo distintas técnicas relacionadas con el aprendizaje automático y la optimización se han incorporado a estas tareas de predicción, con las cuales se obtienen generalmente mejores resultados en los valores estimados que aquellos generados a partir de técnicas más tradicionales. La presente investigación tiene como objetivo realizar una revisión de lo publicado sobre predicciones de variables en sistemas de Ingeniería Eléctrica en las bases de datos EBSCO, SciELO, RedAlyc, Springer Link, IEEE Xplorer, y Google Académico, a partir de una delimitación temporal y de palabras clave del área. A partir del análisis de la literatura se obtuvo la tendencia sobre el tema a partir de los años más productivos, áreas de impacto e idiomas más frecuentes. Se observó que los estudios desarrollados han crecido en años recientes, y que las áreas de mayor impacto, de acuerdo con el número de publicaciones y de citas son la predicción del consumo y producción de energía eléctrica, y las variables relacionadas con energías renovables. \n ","PeriodicalId":40544,"journal":{"name":"E-Ciencias de la Informacion","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estado del Arte de la Predicción de Variables en Sistemas de Ingeniería Eléctrica Basada en Inteligencia Artificial\",\"authors\":\"Joseline Sánchez Solís, Marvin Coto Jiménez\",\"doi\":\"10.15517/eci.v12i1.47628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existe una gran cantidad de sistemas que se estudian y desarrollan en el campo de la Ingeniería Eléctrica en los que se realizan análisis que tienen como uno de sus fines principales la predicción de sus variables, tanto para procesos de planificación como de toma de decisiones. Con el advenimiento de la Inteligencia Artificial, se ha observado cómo distintas técnicas relacionadas con el aprendizaje automático y la optimización se han incorporado a estas tareas de predicción, con las cuales se obtienen generalmente mejores resultados en los valores estimados que aquellos generados a partir de técnicas más tradicionales. La presente investigación tiene como objetivo realizar una revisión de lo publicado sobre predicciones de variables en sistemas de Ingeniería Eléctrica en las bases de datos EBSCO, SciELO, RedAlyc, Springer Link, IEEE Xplorer, y Google Académico, a partir de una delimitación temporal y de palabras clave del área. A partir del análisis de la literatura se obtuvo la tendencia sobre el tema a partir de los años más productivos, áreas de impacto e idiomas más frecuentes. Se observó que los estudios desarrollados han crecido en años recientes, y que las áreas de mayor impacto, de acuerdo con el número de publicaciones y de citas son la predicción del consumo y producción de energía eléctrica, y las variables relacionadas con energías renovables. \\n \",\"PeriodicalId\":40544,\"journal\":{\"name\":\"E-Ciencias de la Informacion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"E-Ciencias de la Informacion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15517/eci.v12i1.47628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Ciencias de la Informacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15517/eci.v12i1.47628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Estado del Arte de la Predicción de Variables en Sistemas de Ingeniería Eléctrica Basada en Inteligencia Artificial
Existe una gran cantidad de sistemas que se estudian y desarrollan en el campo de la Ingeniería Eléctrica en los que se realizan análisis que tienen como uno de sus fines principales la predicción de sus variables, tanto para procesos de planificación como de toma de decisiones. Con el advenimiento de la Inteligencia Artificial, se ha observado cómo distintas técnicas relacionadas con el aprendizaje automático y la optimización se han incorporado a estas tareas de predicción, con las cuales se obtienen generalmente mejores resultados en los valores estimados que aquellos generados a partir de técnicas más tradicionales. La presente investigación tiene como objetivo realizar una revisión de lo publicado sobre predicciones de variables en sistemas de Ingeniería Eléctrica en las bases de datos EBSCO, SciELO, RedAlyc, Springer Link, IEEE Xplorer, y Google Académico, a partir de una delimitación temporal y de palabras clave del área. A partir del análisis de la literatura se obtuvo la tendencia sobre el tema a partir de los años más productivos, áreas de impacto e idiomas más frecuentes. Se observó que los estudios desarrollados han crecido en años recientes, y que las áreas de mayor impacto, de acuerdo con el número de publicaciones y de citas son la predicción del consumo y producción de energía eléctrica, y las variables relacionadas con energías renovables.