基于碱土费米子的高孤立稳定少自旋系统的实现

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Frontiers of Physics Pub Date : 2023-07-12 DOI:10.1007/s11467-023-1314-2
Wen-Wei Wang, Han Zhang, Chang Qiao, Ming-Cheng Liang, Rui Wu, Xibo Zhang
{"title":"基于碱土费米子的高孤立稳定少自旋系统的实现","authors":"Wen-Wei Wang,&nbsp;Han Zhang,&nbsp;Chang Qiao,&nbsp;Ming-Cheng Liang,&nbsp;Rui Wu,&nbsp;Xibo Zhang","doi":"10.1007/s11467-023-1314-2","DOIUrl":null,"url":null,"abstract":"<div><p>Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches. However, more developments are still needed for better preparation of isolated few-spin systems. In this work, we demonstrate a highly nonlinear spin-discriminating (HNSD) method for isolating an arbitrary few-level manifold out of a larger total number of spin ground states in fermionic alkaline-earth atoms. With this method, we realize large and tunable energy shifts for unwanted spin states while inducing negligible shifts for the spin states of interest, which leads to a highly isolated few-spin system under minimal perturbation. Furthermore, the isolated few-spin system exhibits a long lifetime on the hundred-millisecond scale. Using the HNSD method, we demonstrate a characteristic Rabi oscillation between the two states of an isolated two-spin Fermi gas. Our method has wide applicability for realizing long-lived two-spin or high-spin quantum systems based on alkaline-earth fermions.\n</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"18 6","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realization of highly isolated stable few-spin systems based on alkaline-earth fermions\",\"authors\":\"Wen-Wei Wang,&nbsp;Han Zhang,&nbsp;Chang Qiao,&nbsp;Ming-Cheng Liang,&nbsp;Rui Wu,&nbsp;Xibo Zhang\",\"doi\":\"10.1007/s11467-023-1314-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches. However, more developments are still needed for better preparation of isolated few-spin systems. In this work, we demonstrate a highly nonlinear spin-discriminating (HNSD) method for isolating an arbitrary few-level manifold out of a larger total number of spin ground states in fermionic alkaline-earth atoms. With this method, we realize large and tunable energy shifts for unwanted spin states while inducing negligible shifts for the spin states of interest, which leads to a highly isolated few-spin system under minimal perturbation. Furthermore, the isolated few-spin system exhibits a long lifetime on the hundred-millisecond scale. Using the HNSD method, we demonstrate a characteristic Rabi oscillation between the two states of an isolated two-spin Fermi gas. Our method has wide applicability for realizing long-lived two-spin or high-spin quantum systems based on alkaline-earth fermions.\\n</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-023-1314-2\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1314-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由一定数量的自旋态组成的低能级系统为广泛的冷原子研究提供了基础。然而,为了更好地制备孤立的少自旋体系,还需要更多的发展。在这项工作中,我们证明了一种高度非线性的自旋判别(HNSD)方法,用于从费米子碱土原子的更大总数的自旋基态中分离任意低能级流形。利用这种方法,我们实现了不需要的自旋态的大而可调的能量位移,而引起感兴趣的自旋态的可忽略不计的位移,从而导致在最小扰动下高度孤立的少自旋系统。此外,孤立的少自旋系统在百毫秒尺度上表现出较长的寿命。利用HNSD方法,我们证明了孤立的双自旋费米气体在两种状态之间的特征拉比振荡。我们的方法对于实现基于碱地费米子的长寿命双自旋或高自旋量子系统具有广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realization of highly isolated stable few-spin systems based on alkaline-earth fermions

Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches. However, more developments are still needed for better preparation of isolated few-spin systems. In this work, we demonstrate a highly nonlinear spin-discriminating (HNSD) method for isolating an arbitrary few-level manifold out of a larger total number of spin ground states in fermionic alkaline-earth atoms. With this method, we realize large and tunable energy shifts for unwanted spin states while inducing negligible shifts for the spin states of interest, which leads to a highly isolated few-spin system under minimal perturbation. Furthermore, the isolated few-spin system exhibits a long lifetime on the hundred-millisecond scale. Using the HNSD method, we demonstrate a characteristic Rabi oscillation between the two states of an isolated two-spin Fermi gas. Our method has wide applicability for realizing long-lived two-spin or high-spin quantum systems based on alkaline-earth fermions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
期刊最新文献
Erratum to: Noisy intermediate-scale quantum computers Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters Bayesian method for fitting the low-energy constants in chiral perturbation theory Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1