在流体力学及其他领域传播密度波动

S. Cazzato, M. G. Izzo, T. Bryk, T. Scopigno, G. Ruocco
{"title":"在流体力学及其他领域传播密度波动","authors":"S. Cazzato, M. G. Izzo, T. Bryk, T. Scopigno, G. Ruocco","doi":"10.1478/AAPP.98S1A2","DOIUrl":null,"url":null,"abstract":"Density fluctuations in simple liquids are analysed in the context of three different and widely used formalisms, whose equivalence in the hydrodynamic limit is shown. We, furthermore, address the issue of the dispersion of the propagating modes outside the hydrodynamics, by comparing three different definitions of the generalized sound velocity. The first definition is standard in statistical mechanics. It relates the sound velocity to the imaginary part of the complex conjugate poles of the so-called intermediate scattering function. Other definitions, frequently used in the literature, identify the characteristic frequencies of the inelastic excitations with the maxima of the inelastic features of the dynamic structure factor, or with the maxima of the current function. The behaviour of these three quantities in the hydrodynamic limit is discussed. Deviations from hydrodynamic dispersion law are also considered with particular emphasis given to the analysis of different sound propagation regimes related to different density fluctuations decay channels.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagating density fluctuations in hydrodynamics and beyond\",\"authors\":\"S. Cazzato, M. G. Izzo, T. Bryk, T. Scopigno, G. Ruocco\",\"doi\":\"10.1478/AAPP.98S1A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density fluctuations in simple liquids are analysed in the context of three different and widely used formalisms, whose equivalence in the hydrodynamic limit is shown. We, furthermore, address the issue of the dispersion of the propagating modes outside the hydrodynamics, by comparing three different definitions of the generalized sound velocity. The first definition is standard in statistical mechanics. It relates the sound velocity to the imaginary part of the complex conjugate poles of the so-called intermediate scattering function. Other definitions, frequently used in the literature, identify the characteristic frequencies of the inelastic excitations with the maxima of the inelastic features of the dynamic structure factor, or with the maxima of the current function. The behaviour of these three quantities in the hydrodynamic limit is discussed. Deviations from hydrodynamic dispersion law are also considered with particular emphasis given to the analysis of different sound propagation regimes related to different density fluctuations decay channels.\",\"PeriodicalId\":43431,\"journal\":{\"name\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1478/AAPP.98S1A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.98S1A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文在三种不同的、广泛使用的形式的背景下分析了简单液体的密度涨落,并证明了它们在水动力极限下的等价性。此外,我们通过比较三种不同的广义声速定义,解决了在流体力学之外传播模式的色散问题。第一个定义是统计力学中的标准定义。它将声速与所谓的中间散射函数的复共轭极点的虚部联系起来。文献中经常使用的其他定义,用动力结构因子的非弹性特征的最大值或当前函数的最大值来识别非弹性激励的特征频率。讨论了这三个量在水动力极限下的行为。还考虑了与水动力色散规律的偏差,特别强调了与不同密度起伏衰减通道相关的不同声音传播方式的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Propagating density fluctuations in hydrodynamics and beyond
Density fluctuations in simple liquids are analysed in the context of three different and widely used formalisms, whose equivalence in the hydrodynamic limit is shown. We, furthermore, address the issue of the dispersion of the propagating modes outside the hydrodynamics, by comparing three different definitions of the generalized sound velocity. The first definition is standard in statistical mechanics. It relates the sound velocity to the imaginary part of the complex conjugate poles of the so-called intermediate scattering function. Other definitions, frequently used in the literature, identify the characteristic frequencies of the inelastic excitations with the maxima of the inelastic features of the dynamic structure factor, or with the maxima of the current function. The behaviour of these three quantities in the hydrodynamic limit is discussed. Deviations from hydrodynamic dispersion law are also considered with particular emphasis given to the analysis of different sound propagation regimes related to different density fluctuations decay channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
31 weeks
期刊介绍: This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.
期刊最新文献
GATE Monte Carlo dosimetry in 90 Y TARE planning: influence of simulation parameters and image resampling on dosimetric accuracy and optimization of computational times Teaching palaeontology: An open access guide-book of fossil invertebrates Paleoart as a teaching tool: Life restorations of quaternary mammals of Sicily (Italy) A flipped classroom experience: towards the knowledge of new ecofriendly materials named "geopolymers" Using a forensic - based learning approach to teach geochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1