DNA双链断裂修复中SUMOylation修饰的研究进展

Mengmeng Yang, Yan Wang, Liqing Du, Qiang Liu, Kaihua Ji
{"title":"DNA双链断裂修复中SUMOylation修饰的研究进展","authors":"Mengmeng Yang, Yan Wang, Liqing Du, Qiang Liu, Kaihua Ji","doi":"10.3760/CMA.J.ISSN.1673-4181.2019.02.012","DOIUrl":null,"url":null,"abstract":"The small ubiquitin-like modified protein (SUMO) is a protein structurally similar to ubiquitin which is involved in post-translational modification of proteins. SUMOylation refers to the process that SUMO molecule covalently binding to the specific lysine site of target proteins through maturation, activation, binding and ligation by ubiquitin-like specific protease 1 (Ulp1), E1 activating enzyme, E2 binding enzyme, and E3 ligase. SUMOylation alters the activity of target proteins, which is involved in the regulation of various cellular functions such as transcriptional regulation, regulation of embryonic development, cellular stress, maintenance of chromatin structure and genomic stability. In recent years, it has been found that SUMOylation modification is also widely involved in DNA damage repair, especially DNA double-strand breaks (DSBs), which are the most serious types of DNA damage. SUMOylation is involved in almost all processes of DSBs repair, so its role in DNA damage repair has become a research hotspot. In this paper, the research progress of the regulation of SUMOylation in DSBs repair was reviewed. \n \n \nKey words: \nDNA damage; DNA repair; SUMOylation; DNA double-strand breaks; Non-homologous end joining; Homologous recombination","PeriodicalId":61751,"journal":{"name":"国际生物医学工程杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress of SUMOylation modification in DNA double-strand break repair\",\"authors\":\"Mengmeng Yang, Yan Wang, Liqing Du, Qiang Liu, Kaihua Ji\",\"doi\":\"10.3760/CMA.J.ISSN.1673-4181.2019.02.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The small ubiquitin-like modified protein (SUMO) is a protein structurally similar to ubiquitin which is involved in post-translational modification of proteins. SUMOylation refers to the process that SUMO molecule covalently binding to the specific lysine site of target proteins through maturation, activation, binding and ligation by ubiquitin-like specific protease 1 (Ulp1), E1 activating enzyme, E2 binding enzyme, and E3 ligase. SUMOylation alters the activity of target proteins, which is involved in the regulation of various cellular functions such as transcriptional regulation, regulation of embryonic development, cellular stress, maintenance of chromatin structure and genomic stability. In recent years, it has been found that SUMOylation modification is also widely involved in DNA damage repair, especially DNA double-strand breaks (DSBs), which are the most serious types of DNA damage. SUMOylation is involved in almost all processes of DSBs repair, so its role in DNA damage repair has become a research hotspot. In this paper, the research progress of the regulation of SUMOylation in DSBs repair was reviewed. \\n \\n \\nKey words: \\nDNA damage; DNA repair; SUMOylation; DNA double-strand breaks; Non-homologous end joining; Homologous recombination\",\"PeriodicalId\":61751,\"journal\":{\"name\":\"国际生物医学工程杂志\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际生物医学工程杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3760/CMA.J.ISSN.1673-4181.2019.02.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际生物医学工程杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3760/CMA.J.ISSN.1673-4181.2019.02.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小泛素样修饰蛋白(small ubiquitin-like modified protein, SUMO)是一种结构类似于泛素的蛋白质,参与蛋白质的翻译后修饰。SUMO酰化是指SUMO分子通过泛素样特异性蛋白酶1 (Ulp1)、E1激活酶、E2结合酶和E3连接酶的成熟、激活、结合和连接,与靶蛋白的特定赖氨酸位点共价结合的过程。SUMOylation可改变靶蛋白的活性,参与多种细胞功能的调控,如转录调控、胚胎发育调控、细胞应激、染色质结构维持和基因组稳定性等。近年来,人们发现SUMOylation修饰也广泛参与DNA损伤修复,尤其是DNA双链断裂(DNA double-strand breaks, DSBs),这是DNA损伤最严重的类型。summoylation几乎参与了dsb修复的所有过程,因此其在DNA损伤修复中的作用已成为研究热点。本文就SUMOylation在dsb修复中的调控研究进展进行综述。关键词:DNA损伤;DNA修复;SUMOylation;DNA双链断裂;非同源端连接;同源重组
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research progress of SUMOylation modification in DNA double-strand break repair
The small ubiquitin-like modified protein (SUMO) is a protein structurally similar to ubiquitin which is involved in post-translational modification of proteins. SUMOylation refers to the process that SUMO molecule covalently binding to the specific lysine site of target proteins through maturation, activation, binding and ligation by ubiquitin-like specific protease 1 (Ulp1), E1 activating enzyme, E2 binding enzyme, and E3 ligase. SUMOylation alters the activity of target proteins, which is involved in the regulation of various cellular functions such as transcriptional regulation, regulation of embryonic development, cellular stress, maintenance of chromatin structure and genomic stability. In recent years, it has been found that SUMOylation modification is also widely involved in DNA damage repair, especially DNA double-strand breaks (DSBs), which are the most serious types of DNA damage. SUMOylation is involved in almost all processes of DSBs repair, so its role in DNA damage repair has become a research hotspot. In this paper, the research progress of the regulation of SUMOylation in DSBs repair was reviewed. Key words: DNA damage; DNA repair; SUMOylation; DNA double-strand breaks; Non-homologous end joining; Homologous recombination
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1974
期刊最新文献
A Study on Assessment of Depression, Anxiety and Stress among South Indian Population During the COVID-19 Pandemic Study on Antiviral Activities of Glycyrrhizin Improving Clinical Teaching of Fourth Year Anaesthesia Students: The Case of Wolaita Sodo University Hearing Aids of the Future: A Simulation Study Association Between the Distributions of Mean Corpuscular Hemoglobin and Red Blood Cell, and Mortality in a 3-Year Retrospective Study of Hemodialysis Patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1