Verena Dornauer, Michael Netzer, Éva Kaczkó, Lisa-Maria Norz, Elske Ammenwerth
{"title":"在线讨论和其他学习痕迹的自动分类以检测认知存在","authors":"Verena Dornauer, Michael Netzer, Éva Kaczkó, Lisa-Maria Norz, Elske Ammenwerth","doi":"10.1007/s40593-023-00335-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive presence is a core construct of the Community of Inquiry (CoI) framework. It is considered crucial for deep and meaningful online-based learning. CoI-based real-time dashboards visualizing students' cognitive presence may help instructors to monitor and support students' learning progress. Such real-time classifiers are often based on the linguistic analysis of the content of posts made by students. It is unclear whether these classifiers could be improved by considering other learning traces, such as files attached to students' posts. We aimed to develop a German-language cognitive presence classifier that includes linguistic analysis using the Linguistic Inquiry and Word Count (LIWC) tool and other learning traces based on 1,521 manually coded meaningful units from an online-based university course. As learning traces, we included not only the linguistic features from the LIWC tool, but also features such as attaching files to a post, tagging, or using terms from the course glossary. We used the <i>k</i>-nearest neighbor method, a random forest model, and a multilayer perceptron as classifiers. The results showed an accuracy of up to 82% and a Cohen's κ of 0.76 for the cognitive presence classifier for German posts. Including learning traces did not improve the predictive ability. In conclusion, we developed an automatic classifier for German-language courses based on a linguistic analysis of students' posts. This classifier is a step toward a teacher dashboard. Our work also provides the first fully CoI-coded German dataset for future research on cognitive presence.</p>","PeriodicalId":46637,"journal":{"name":"International Journal of Artificial Intelligence in Education","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139697/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic Classification of Online Discussions and Other Learning Traces to Detect Cognitive Presence.\",\"authors\":\"Verena Dornauer, Michael Netzer, Éva Kaczkó, Lisa-Maria Norz, Elske Ammenwerth\",\"doi\":\"10.1007/s40593-023-00335-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cognitive presence is a core construct of the Community of Inquiry (CoI) framework. It is considered crucial for deep and meaningful online-based learning. CoI-based real-time dashboards visualizing students' cognitive presence may help instructors to monitor and support students' learning progress. Such real-time classifiers are often based on the linguistic analysis of the content of posts made by students. It is unclear whether these classifiers could be improved by considering other learning traces, such as files attached to students' posts. We aimed to develop a German-language cognitive presence classifier that includes linguistic analysis using the Linguistic Inquiry and Word Count (LIWC) tool and other learning traces based on 1,521 manually coded meaningful units from an online-based university course. As learning traces, we included not only the linguistic features from the LIWC tool, but also features such as attaching files to a post, tagging, or using terms from the course glossary. We used the <i>k</i>-nearest neighbor method, a random forest model, and a multilayer perceptron as classifiers. The results showed an accuracy of up to 82% and a Cohen's κ of 0.76 for the cognitive presence classifier for German posts. Including learning traces did not improve the predictive ability. In conclusion, we developed an automatic classifier for German-language courses based on a linguistic analysis of students' posts. This classifier is a step toward a teacher dashboard. Our work also provides the first fully CoI-coded German dataset for future research on cognitive presence.</p>\",\"PeriodicalId\":46637,\"journal\":{\"name\":\"International Journal of Artificial Intelligence in Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139697/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Artificial Intelligence in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40593-023-00335-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Intelligence in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40593-023-00335-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
认知存在是探究社区(CoI)框架的核心结构。它被认为是深度和有意义的在线学习的关键。基于 CoI 的可视化学生认知存在的实时仪表盘可以帮助教师监控和支持学生的学习进度。这类实时分类器通常基于对学生所发帖子内容的语言分析。目前还不清楚这些分类器是否可以通过考虑其他学习痕迹(如学生帖子的附件文件)来加以改进。我们的目标是开发一种德语认知存在分类器,其中包括使用语言探究和字数统计(LIWC)工具进行的语言分析,以及基于一门在线大学课程中 1,521 个人工编码的有意义单元的其他学习痕迹。作为学习痕迹,我们不仅包括来自语言调查和字数统计工具的语言特征,还包括诸如在帖子中附加文件、标记或使用课程词汇表中的术语等特征。我们使用 k 近邻法、随机森林模型和多层感知器作为分类器。结果显示,德语帖子认知存在分类器的准确率高达 82%,科恩κ值为 0.76。加入学习痕迹并没有提高预测能力。总之,我们基于对学生帖子的语言分析,为德语课程开发了一个自动分类器。该分类器向教师仪表板迈出了一步。我们的工作还为未来的认知存在研究提供了第一个完全由 CoI 编码的德语数据集。
Automatic Classification of Online Discussions and Other Learning Traces to Detect Cognitive Presence.
Cognitive presence is a core construct of the Community of Inquiry (CoI) framework. It is considered crucial for deep and meaningful online-based learning. CoI-based real-time dashboards visualizing students' cognitive presence may help instructors to monitor and support students' learning progress. Such real-time classifiers are often based on the linguistic analysis of the content of posts made by students. It is unclear whether these classifiers could be improved by considering other learning traces, such as files attached to students' posts. We aimed to develop a German-language cognitive presence classifier that includes linguistic analysis using the Linguistic Inquiry and Word Count (LIWC) tool and other learning traces based on 1,521 manually coded meaningful units from an online-based university course. As learning traces, we included not only the linguistic features from the LIWC tool, but also features such as attaching files to a post, tagging, or using terms from the course glossary. We used the k-nearest neighbor method, a random forest model, and a multilayer perceptron as classifiers. The results showed an accuracy of up to 82% and a Cohen's κ of 0.76 for the cognitive presence classifier for German posts. Including learning traces did not improve the predictive ability. In conclusion, we developed an automatic classifier for German-language courses based on a linguistic analysis of students' posts. This classifier is a step toward a teacher dashboard. Our work also provides the first fully CoI-coded German dataset for future research on cognitive presence.
期刊介绍:
IJAIED publishes papers concerned with the application of AI to education. It aims to help the development of principles for the design of computer-based learning systems. Its premise is that such principles involve the modelling and representation of relevant aspects of knowledge, before implementation or during execution, and hence require the application of AI techniques and concepts. IJAIED has a very broad notion of the scope of AI and of a ''computer-based learning system'', as indicated by the following list of topics considered to be within the scope of IJAIED: adaptive and intelligent multimedia and hypermedia systemsagent-based learning environmentsAIED and teacher educationarchitectures for AIED systemsassessment and testing of learning outcomesauthoring systems and shells for AIED systemsbayesian and statistical methodscase-based systemscognitive developmentcognitive models of problem-solvingcognitive tools for learningcomputer-assisted language learningcomputer-supported collaborative learningdialogue (argumentation, explanation, negotiation, etc.) discovery environments and microworldsdistributed learning environmentseducational roboticsembedded training systemsempirical studies to inform the design of learning environmentsenvironments to support the learning of programmingevaluation of AIED systemsformal models of components of AIED systemshelp and advice systemshuman factors and interface designinstructional design principlesinstructional planningintelligent agents on the internetintelligent courseware for computer-based trainingintelligent tutoring systemsknowledge and skill acquisitionknowledge representation for instructionmodelling metacognitive skillsmodelling pedagogical interactionsmotivationnatural language interfaces for instructional systemsnetworked learning and teaching systemsneural models applied to AIED systemsperformance support systemspractical, real-world applications of AIED systemsqualitative reasoning in simulationssituated learning and cognitive apprenticeshipsocial and cultural aspects of learningstudent modelling and cognitive diagnosissupport for knowledge building communitiessupport for networked communicationtheories of learning and conceptual changetools for administration and curriculum integrationtools for the guided exploration of information resources