基于肾脏医学图像的诊断分割

Shixuemei, Mideth Abisado
{"title":"基于肾脏医学图像的诊断分割","authors":"Shixuemei, Mideth Abisado","doi":"10.37965/jait.2023.0214","DOIUrl":null,"url":null,"abstract":"Lesion segmentation of medical images is an important component of smart medicine. The development of deep learning technology is followed by rapid advancement in lesion segmentation technology of medical images. Though the present segmentation technology can retain spatial features, insufficient spatial features are retained with low segmentation accuracy. Our proposed PST-UNet model combines transformer with U-shaped structure and better infuses encoder's multi-scale features by using convolution fusion module. PST-UNet model adopts two types of block Swin transform at encoder and decoder ends respectively. Renal lesion data tends to present a normal distribution. Therefore, to preserve more spatial features and enhance the precision of renal lesion segmentation, Swin transformer block and full GELU (Gaussian Error Linear Unit) activation function are introduced at the encoder end. Similarly, at the decoder end, Swin transformer block, full GELU activation function, up-sampling and jumper wires from the convolution fusion module are also introduced.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic Segmentation Based on Kidney Medical Image\",\"authors\":\"Shixuemei, Mideth Abisado\",\"doi\":\"10.37965/jait.2023.0214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lesion segmentation of medical images is an important component of smart medicine. The development of deep learning technology is followed by rapid advancement in lesion segmentation technology of medical images. Though the present segmentation technology can retain spatial features, insufficient spatial features are retained with low segmentation accuracy. Our proposed PST-UNet model combines transformer with U-shaped structure and better infuses encoder's multi-scale features by using convolution fusion module. PST-UNet model adopts two types of block Swin transform at encoder and decoder ends respectively. Renal lesion data tends to present a normal distribution. Therefore, to preserve more spatial features and enhance the precision of renal lesion segmentation, Swin transformer block and full GELU (Gaussian Error Linear Unit) activation function are introduced at the encoder end. Similarly, at the decoder end, Swin transformer block, full GELU activation function, up-sampling and jumper wires from the convolution fusion module are also introduced.\",\"PeriodicalId\":70996,\"journal\":{\"name\":\"人工智能技术学报(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"人工智能技术学报(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.37965/jait.2023.0214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2023.0214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医学图像的病灶分割是智能医学的重要组成部分。随着深度学习技术的发展,医学图像的病灶分割技术也得到了快速发展。目前的分割技术虽然可以保留空间特征,但保留的空间特征不足,分割精度不高。我们提出的PST-UNet模型将变压器与u型结构相结合,通过卷积融合模块更好地融入编码器的多尺度特征。PST-UNet模型分别在编码器端和解码器端采用两种块Swin变换。肾脏病变数据呈正态分布。因此,为了保留更多的空间特征,提高肾脏病变分割的精度,在编码器端引入了Swin变压器块和全GELU(高斯误差线性单元)激活函数。同样,在解码器端,还引入了Swin变压器块、全GELU激活函数、卷积融合模块的上采样和跳线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnostic Segmentation Based on Kidney Medical Image
Lesion segmentation of medical images is an important component of smart medicine. The development of deep learning technology is followed by rapid advancement in lesion segmentation technology of medical images. Though the present segmentation technology can retain spatial features, insufficient spatial features are retained with low segmentation accuracy. Our proposed PST-UNet model combines transformer with U-shaped structure and better infuses encoder's multi-scale features by using convolution fusion module. PST-UNet model adopts two types of block Swin transform at encoder and decoder ends respectively. Renal lesion data tends to present a normal distribution. Therefore, to preserve more spatial features and enhance the precision of renal lesion segmentation, Swin transformer block and full GELU (Gaussian Error Linear Unit) activation function are introduced at the encoder end. Similarly, at the decoder end, Swin transformer block, full GELU activation function, up-sampling and jumper wires from the convolution fusion module are also introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Detection of Streaks in Astronomical Images Using Machine Learning An Optimal BDCNN ML Architecture for Car Make Model Prediction A Bio-Inspired Method For Breast Histopathology Image Classification Using Transfer Learning Convolutional Neural Networks for Automated Diagnosis of Diabetic Retinopathy in Fundus Images Automated Staging and Grading for Retinopathy of Prematurity on Indian Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1