M. R., H. M. T. Gadiyar, Sharath S. M., M. Bharathrajkumar, S. K
{"title":"媒体云数据增强的基于密文策略属性的加密和序列化","authors":"M. R., H. M. T. Gadiyar, Sharath S. M., M. Bharathrajkumar, S. K","doi":"10.1108/ijpcc-06-2022-0223","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThere are various system techniques or models which are used for access control by performing cryptographic operations and characterizing to provide an efficient cloud and in Internet of Things (IoT) access control. Particularly in cloud computing environment, there is a large-scale distribution of these traditional symmetric cryptographic techniques. These symmetric cryptographic techniques use the same key for encryption and decryption processes. However, during the execution of these phases, they are under the problems of key distribution and management. The purpose of this study is to provide efficient key management and key distribution in cloud computing environment.\n\n\nDesign/methodology/approach\nThis paper uses the Cipher text-Policy Attribute-Based Encryption (CP-ABE) technique with proper access control policy which is used to provide the data owner’s control and share the data through encryption process in Cloud and IoT environment. The data are shared with the the help of cloud storage, even in presence of authorized users. The main method used in this research is Enhanced CP-ABE Serialization (E-CP-ABES) approach.\n\n\nFindings\nThe results are measured by means of encryption, completion and decryption time that showed better results when compared with the existing CP-ABE technique. The comparative analysis has showed that the proposed E-CP-ABES has obtained better results of 2373 ms for completion time for 256 key lengths, whereas the existing CP-ABE has obtained 3129 ms of completion time. In addition to this, the existing Advanced Encryption Standard (AES) scheme showed 3449 ms of completion time.\n\n\nOriginality/value\nThe proposed research work uses an E-CP-ABES access control technique that verifies the hidden attributes having a very sensitive dataset constraint and provides solution to the key management problem and access control mechanism existing in IOT and cloud computing environment. The novelty of the research is that the proposed E-CP-ABES incorporates extensible, partially hidden constraint policy by using a process known as serialization procedure and it serializes to a byte stream. Redundant residue number system is considered to remove errors that occur during the processing of bits or data obtained from the serialization. The data stream is recovered using the Deserialization process.\n","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced cipher text-policy attribute-based encryption and serialization on media cloud data\",\"authors\":\"M. R., H. M. T. Gadiyar, Sharath S. M., M. Bharathrajkumar, S. K\",\"doi\":\"10.1108/ijpcc-06-2022-0223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThere are various system techniques or models which are used for access control by performing cryptographic operations and characterizing to provide an efficient cloud and in Internet of Things (IoT) access control. Particularly in cloud computing environment, there is a large-scale distribution of these traditional symmetric cryptographic techniques. These symmetric cryptographic techniques use the same key for encryption and decryption processes. However, during the execution of these phases, they are under the problems of key distribution and management. The purpose of this study is to provide efficient key management and key distribution in cloud computing environment.\\n\\n\\nDesign/methodology/approach\\nThis paper uses the Cipher text-Policy Attribute-Based Encryption (CP-ABE) technique with proper access control policy which is used to provide the data owner’s control and share the data through encryption process in Cloud and IoT environment. The data are shared with the the help of cloud storage, even in presence of authorized users. The main method used in this research is Enhanced CP-ABE Serialization (E-CP-ABES) approach.\\n\\n\\nFindings\\nThe results are measured by means of encryption, completion and decryption time that showed better results when compared with the existing CP-ABE technique. The comparative analysis has showed that the proposed E-CP-ABES has obtained better results of 2373 ms for completion time for 256 key lengths, whereas the existing CP-ABE has obtained 3129 ms of completion time. In addition to this, the existing Advanced Encryption Standard (AES) scheme showed 3449 ms of completion time.\\n\\n\\nOriginality/value\\nThe proposed research work uses an E-CP-ABES access control technique that verifies the hidden attributes having a very sensitive dataset constraint and provides solution to the key management problem and access control mechanism existing in IOT and cloud computing environment. The novelty of the research is that the proposed E-CP-ABES incorporates extensible, partially hidden constraint policy by using a process known as serialization procedure and it serializes to a byte stream. Redundant residue number system is considered to remove errors that occur during the processing of bits or data obtained from the serialization. The data stream is recovered using the Deserialization process.\\n\",\"PeriodicalId\":43952,\"journal\":{\"name\":\"International Journal of Pervasive Computing and Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pervasive Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijpcc-06-2022-0223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-06-2022-0223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Enhanced cipher text-policy attribute-based encryption and serialization on media cloud data
Purpose
There are various system techniques or models which are used for access control by performing cryptographic operations and characterizing to provide an efficient cloud and in Internet of Things (IoT) access control. Particularly in cloud computing environment, there is a large-scale distribution of these traditional symmetric cryptographic techniques. These symmetric cryptographic techniques use the same key for encryption and decryption processes. However, during the execution of these phases, they are under the problems of key distribution and management. The purpose of this study is to provide efficient key management and key distribution in cloud computing environment.
Design/methodology/approach
This paper uses the Cipher text-Policy Attribute-Based Encryption (CP-ABE) technique with proper access control policy which is used to provide the data owner’s control and share the data through encryption process in Cloud and IoT environment. The data are shared with the the help of cloud storage, even in presence of authorized users. The main method used in this research is Enhanced CP-ABE Serialization (E-CP-ABES) approach.
Findings
The results are measured by means of encryption, completion and decryption time that showed better results when compared with the existing CP-ABE technique. The comparative analysis has showed that the proposed E-CP-ABES has obtained better results of 2373 ms for completion time for 256 key lengths, whereas the existing CP-ABE has obtained 3129 ms of completion time. In addition to this, the existing Advanced Encryption Standard (AES) scheme showed 3449 ms of completion time.
Originality/value
The proposed research work uses an E-CP-ABES access control technique that verifies the hidden attributes having a very sensitive dataset constraint and provides solution to the key management problem and access control mechanism existing in IOT and cloud computing environment. The novelty of the research is that the proposed E-CP-ABES incorporates extensible, partially hidden constraint policy by using a process known as serialization procedure and it serializes to a byte stream. Redundant residue number system is considered to remove errors that occur during the processing of bits or data obtained from the serialization. The data stream is recovered using the Deserialization process.