{"title":"De re metallica:星系的宇宙化学演化","authors":"R. Maiolino, F. Mannucci","doi":"10.1007/s00159-018-0112-2","DOIUrl":null,"url":null,"abstract":"<p>The evolution of the content of heavy elements in galaxies, the relative chemical abundances, their spatial distribution, and how these scale with various galactic properties, provide unique information on the galactic evolutionary processes across the cosmic epochs. In recent years major progress has been made in constraining the chemical evolution of galaxies and inferring key information relevant to our understanding of the main mechanisms involved in galaxy evolution. In this review we provide an overview of these various areas. After an overview of the methods used to constrain the chemical enrichment in galaxies and their environment, we discuss the observed scaling relations between metallicity and galaxy properties, the observed relative chemical abundances, how the chemical elements are distributed within galaxies, and how these properties evolve across the cosmic epochs. We discuss how the various observational findings compare with the predictions from theoretical models and numerical cosmological simulations. Finally, we briefly discuss the open problems and the prospects for major progress in this field in the nearby future.</p>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"27 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00159-018-0112-2","citationCount":"229","resultStr":"{\"title\":\"De re metallica: the cosmic chemical evolution of galaxies\",\"authors\":\"R. Maiolino, F. Mannucci\",\"doi\":\"10.1007/s00159-018-0112-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The evolution of the content of heavy elements in galaxies, the relative chemical abundances, their spatial distribution, and how these scale with various galactic properties, provide unique information on the galactic evolutionary processes across the cosmic epochs. In recent years major progress has been made in constraining the chemical evolution of galaxies and inferring key information relevant to our understanding of the main mechanisms involved in galaxy evolution. In this review we provide an overview of these various areas. After an overview of the methods used to constrain the chemical enrichment in galaxies and their environment, we discuss the observed scaling relations between metallicity and galaxy properties, the observed relative chemical abundances, how the chemical elements are distributed within galaxies, and how these properties evolve across the cosmic epochs. We discuss how the various observational findings compare with the predictions from theoretical models and numerical cosmological simulations. Finally, we briefly discuss the open problems and the prospects for major progress in this field in the nearby future.</p>\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2019-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00159-018-0112-2\",\"citationCount\":\"229\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00159-018-0112-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-018-0112-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
De re metallica: the cosmic chemical evolution of galaxies
The evolution of the content of heavy elements in galaxies, the relative chemical abundances, their spatial distribution, and how these scale with various galactic properties, provide unique information on the galactic evolutionary processes across the cosmic epochs. In recent years major progress has been made in constraining the chemical evolution of galaxies and inferring key information relevant to our understanding of the main mechanisms involved in galaxy evolution. In this review we provide an overview of these various areas. After an overview of the methods used to constrain the chemical enrichment in galaxies and their environment, we discuss the observed scaling relations between metallicity and galaxy properties, the observed relative chemical abundances, how the chemical elements are distributed within galaxies, and how these properties evolve across the cosmic epochs. We discuss how the various observational findings compare with the predictions from theoretical models and numerical cosmological simulations. Finally, we briefly discuss the open problems and the prospects for major progress in this field in the nearby future.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.