Haoyang Zhou, Sheng Zhang, Shunjia Wang, Yao Yao, Qingnan Cai, Jing Lin, Xiaoying Zheng, Zhuo Wang, Z. Tao, Qiong He, Lei Zhou
{"title":"用于太赫兹波动态双模调制的光学控制电介质超表面","authors":"Haoyang Zhou, Sheng Zhang, Shunjia Wang, Yao Yao, Qingnan Cai, Jing Lin, Xiaoying Zheng, Zhuo Wang, Z. Tao, Qiong He, Lei Zhou","doi":"10.1117/1.AP.5.2.026005","DOIUrl":null,"url":null,"abstract":"Abstract. Dynamically controlling terahertz (THz) waves with an ultracompact device is highly desired, but previously realized tunable devices are bulky in size and/or exhibit limited light-tuning functionalities. Here, we experimentally demonstrate dynamic modulation on THz waves with a dielectric metasurface in mode-selective or mode-unselective manners through pumping the system at different optical wavelengths. Quasi-normal-mode theory reveals that the physics is governed by the spatial overlap between wave functions of resonant modes and regions inside resonators perturbed by pump laser excitation at different wavelengths. We further design/fabricate a dielectric metasurface and experimentally demonstrate that it can dynamically control the polarization state of incident THz waves, dictated by the strength and wavelength of the pumping light. We finally numerically demonstrate pump wavelength-controlled optical information encryption based on a carefully designed dielectric metasurface. Our studies reveal that pump light wavelength can be a new external knob to dynamically control THz waves, which may inspire many tunable metadevices with diversified functionalities.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"026005 - 026005"},"PeriodicalIF":20.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves\",\"authors\":\"Haoyang Zhou, Sheng Zhang, Shunjia Wang, Yao Yao, Qingnan Cai, Jing Lin, Xiaoying Zheng, Zhuo Wang, Z. Tao, Qiong He, Lei Zhou\",\"doi\":\"10.1117/1.AP.5.2.026005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Dynamically controlling terahertz (THz) waves with an ultracompact device is highly desired, but previously realized tunable devices are bulky in size and/or exhibit limited light-tuning functionalities. Here, we experimentally demonstrate dynamic modulation on THz waves with a dielectric metasurface in mode-selective or mode-unselective manners through pumping the system at different optical wavelengths. Quasi-normal-mode theory reveals that the physics is governed by the spatial overlap between wave functions of resonant modes and regions inside resonators perturbed by pump laser excitation at different wavelengths. We further design/fabricate a dielectric metasurface and experimentally demonstrate that it can dynamically control the polarization state of incident THz waves, dictated by the strength and wavelength of the pumping light. We finally numerically demonstrate pump wavelength-controlled optical information encryption based on a carefully designed dielectric metasurface. Our studies reveal that pump light wavelength can be a new external knob to dynamically control THz waves, which may inspire many tunable metadevices with diversified functionalities.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":\"5 1\",\"pages\":\"026005 - 026005\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.AP.5.2.026005\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.5.2.026005","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves
Abstract. Dynamically controlling terahertz (THz) waves with an ultracompact device is highly desired, but previously realized tunable devices are bulky in size and/or exhibit limited light-tuning functionalities. Here, we experimentally demonstrate dynamic modulation on THz waves with a dielectric metasurface in mode-selective or mode-unselective manners through pumping the system at different optical wavelengths. Quasi-normal-mode theory reveals that the physics is governed by the spatial overlap between wave functions of resonant modes and regions inside resonators perturbed by pump laser excitation at different wavelengths. We further design/fabricate a dielectric metasurface and experimentally demonstrate that it can dynamically control the polarization state of incident THz waves, dictated by the strength and wavelength of the pumping light. We finally numerically demonstrate pump wavelength-controlled optical information encryption based on a carefully designed dielectric metasurface. Our studies reveal that pump light wavelength can be a new external knob to dynamically control THz waves, which may inspire many tunable metadevices with diversified functionalities.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.