{"title":"Pringsewu灯Gadingrejo距离眩晕病例的人工神经网络地理空间分析","authors":"Mochamad Firman Ghazali, Araneta Aqzela, Christas Gracia, Raudya Santy Febriningtyas, D. Wijayanti","doi":"10.22146/mgi.70474","DOIUrl":null,"url":null,"abstract":"Abstrak.Tingginya prevalensi stunting dipicu oleh kurangnya kualitas hidup balita di awal pertumbuhannya. Hal ini dapat berpengaruh pada rendahnya kualitas sumberdaya manusia dari banyak generasi penerus bangsa. Kajian stunting secara spasial menggunakan artificial neural network (ANN) bertujuan untuk mengetahui pola spasial dan prediksi tingkat kerawanan di wilayah lain di sekitarnya. Analisis dilakukan berdasarkan kondisi sosial-ekonomi dan budaya dari orang tua balita penderita stunting yang diperoleh dari wawancara, diolah dengan inverse distance weighted (IDW) dan diintegrasikan dengan hasil olah citra satelit Landsat 8 OLI-TIRS, berupa percent building density (PBD), land surface temperature (LST), normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), dan normalized difference built-up index (NDBI). Model ANN dijalankan dengan metode back propagation, variasi jumlah hidden layer sebanyak 3, 5, dan 7, dengan variasi input prediksi mampu menghasilkan variasi distribusi stunting dan tingkat akurasinya. Berdasarkan nilai root mean square error (RMSE), bertambahnya jumlah hidden layer dan variasi input prediksi berkontribusi untuk menghasilkan akurasi hasil prediksi lebih baik, yakni 68%-93%. Secara spasial, keduanya secara langsung menjelaskan juga perubahan distribusi pola spasial kerawanan stunting di keseluruhan wilayah studi. Abstract. Lower toddler's life quality triggers the high prevalence of stunting at the beginning of their growth. This factor can affect many future generations' low quality of human resources. Studying stunting spatially using an artificial neural network (ANN) aims to determine the spatial pattern and predict the level of vulnerability in other surrounding areas. The analysis was carried out based on the socio-economic and cultural conditions of parents of children with stunting obtained from interviews, processed by inverse distance weighted (IDW) and integrated with the results of Landsat 8 OLI-TIRS satellite imagery, in the form of percent building density (PBD), land surface temperature (LST), normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and normalized difference built-up index (NDBI). The ANN model is run using the back propagation method, with variations in the number of hidden layers as many as 3, 5, and 7, with variations in predictive input capable of producing variations in the stunting distribution and the level of accuracy. Based on the value of the root mean square error (RMSE), the increasing number of hidden layers and variations in input predictions contribute to producing better prediction accuracy, which is 68%-93%. Spatially, both directly explain the changes in the distribution of the spatial pattern of stunting susceptibility in the entire study area. ","PeriodicalId":55710,"journal":{"name":"Majalah Geografi Indonesia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Geospasial Kasus Stunting menggunakan Artificial Neural Network (ANN) di Kecamatan Gadingrejo, Pringsewu-Lampung\",\"authors\":\"Mochamad Firman Ghazali, Araneta Aqzela, Christas Gracia, Raudya Santy Febriningtyas, D. Wijayanti\",\"doi\":\"10.22146/mgi.70474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstrak.Tingginya prevalensi stunting dipicu oleh kurangnya kualitas hidup balita di awal pertumbuhannya. Hal ini dapat berpengaruh pada rendahnya kualitas sumberdaya manusia dari banyak generasi penerus bangsa. Kajian stunting secara spasial menggunakan artificial neural network (ANN) bertujuan untuk mengetahui pola spasial dan prediksi tingkat kerawanan di wilayah lain di sekitarnya. Analisis dilakukan berdasarkan kondisi sosial-ekonomi dan budaya dari orang tua balita penderita stunting yang diperoleh dari wawancara, diolah dengan inverse distance weighted (IDW) dan diintegrasikan dengan hasil olah citra satelit Landsat 8 OLI-TIRS, berupa percent building density (PBD), land surface temperature (LST), normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), dan normalized difference built-up index (NDBI). Model ANN dijalankan dengan metode back propagation, variasi jumlah hidden layer sebanyak 3, 5, dan 7, dengan variasi input prediksi mampu menghasilkan variasi distribusi stunting dan tingkat akurasinya. Berdasarkan nilai root mean square error (RMSE), bertambahnya jumlah hidden layer dan variasi input prediksi berkontribusi untuk menghasilkan akurasi hasil prediksi lebih baik, yakni 68%-93%. Secara spasial, keduanya secara langsung menjelaskan juga perubahan distribusi pola spasial kerawanan stunting di keseluruhan wilayah studi. Abstract. Lower toddler's life quality triggers the high prevalence of stunting at the beginning of their growth. This factor can affect many future generations' low quality of human resources. Studying stunting spatially using an artificial neural network (ANN) aims to determine the spatial pattern and predict the level of vulnerability in other surrounding areas. The analysis was carried out based on the socio-economic and cultural conditions of parents of children with stunting obtained from interviews, processed by inverse distance weighted (IDW) and integrated with the results of Landsat 8 OLI-TIRS satellite imagery, in the form of percent building density (PBD), land surface temperature (LST), normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and normalized difference built-up index (NDBI). The ANN model is run using the back propagation method, with variations in the number of hidden layers as many as 3, 5, and 7, with variations in predictive input capable of producing variations in the stunting distribution and the level of accuracy. Based on the value of the root mean square error (RMSE), the increasing number of hidden layers and variations in input predictions contribute to producing better prediction accuracy, which is 68%-93%. Spatially, both directly explain the changes in the distribution of the spatial pattern of stunting susceptibility in the entire study area. \",\"PeriodicalId\":55710,\"journal\":{\"name\":\"Majalah Geografi Indonesia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majalah Geografi Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/mgi.70474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Geografi Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/mgi.70474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
抽象。发育初期,幼儿的生活质量较差,导致发育不良的高发病率上升。这可能会影响许多代人缺乏人类资源。空间上的特技研究使用人工神经网络(ANN)来确定周围地区的空间模式和不团结预测。根据父母的社会经济和文化条件进行分析幼儿发育迟缓的采访,用患者距离inverse weighted (IDW)和集成OLI-TIRS 8项陆地卫星的卫星图像,结果简直建筑密度(PBD)、土地地面温度(LST), normalized画水指数(NDWI),土地adjusted植被指数(SAVI), normalized影响built-up指数(NDBI)。该模型是用反辐射方法运行的,隐藏层数的变化多达3、5和7,预测输入的变化可以产生特技分布的变化和准确度。根据root均值值(RMSE),隐藏层的增加和预测输入的变化有助于更好地预测结果的准确性,即68%-93%。从空间上讲,这两种方法都直接解释了整个研究区域的空间冲蚀模式的变化。抽象。下toddler的生活质量高的齿轮在它们生长的开始时对特技的高度警惕。这一因素可能影响许多未来的人类资源。利用人工神经网络(ANN)确定空间模式并预测其他周边地区的脆弱程度,研究身体发育。《socio-economic分析是基于carried out on》和儿童发育和文化条件的父母获得来自interviews,距离processed由inverse weighted (IDW)和集成with The results of陆地卫星卫星8 OLI-TIRS imagery,百分之in The form of建筑密度(PBD)、土地地面温度(LST) normalized画水指数(NDWI)、土地adjusted植被指数(SAVI)和normalized影响built-up指数(NDBI)。ANN model是用背面的传播方法运行,隐藏的数字有许多变量,比如3、5和7,在发育部署和准确程度上产生可变的输入波。基于根平均值值值误差的值,隐藏的数字和输入的变量的增加导致了更准确的预测,这是68%到93%。相反,两人都直接解释了空间分布中的变化,即整个研究区域的停职令人窒息。
Analisis Geospasial Kasus Stunting menggunakan Artificial Neural Network (ANN) di Kecamatan Gadingrejo, Pringsewu-Lampung
Abstrak.Tingginya prevalensi stunting dipicu oleh kurangnya kualitas hidup balita di awal pertumbuhannya. Hal ini dapat berpengaruh pada rendahnya kualitas sumberdaya manusia dari banyak generasi penerus bangsa. Kajian stunting secara spasial menggunakan artificial neural network (ANN) bertujuan untuk mengetahui pola spasial dan prediksi tingkat kerawanan di wilayah lain di sekitarnya. Analisis dilakukan berdasarkan kondisi sosial-ekonomi dan budaya dari orang tua balita penderita stunting yang diperoleh dari wawancara, diolah dengan inverse distance weighted (IDW) dan diintegrasikan dengan hasil olah citra satelit Landsat 8 OLI-TIRS, berupa percent building density (PBD), land surface temperature (LST), normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), dan normalized difference built-up index (NDBI). Model ANN dijalankan dengan metode back propagation, variasi jumlah hidden layer sebanyak 3, 5, dan 7, dengan variasi input prediksi mampu menghasilkan variasi distribusi stunting dan tingkat akurasinya. Berdasarkan nilai root mean square error (RMSE), bertambahnya jumlah hidden layer dan variasi input prediksi berkontribusi untuk menghasilkan akurasi hasil prediksi lebih baik, yakni 68%-93%. Secara spasial, keduanya secara langsung menjelaskan juga perubahan distribusi pola spasial kerawanan stunting di keseluruhan wilayah studi. Abstract. Lower toddler's life quality triggers the high prevalence of stunting at the beginning of their growth. This factor can affect many future generations' low quality of human resources. Studying stunting spatially using an artificial neural network (ANN) aims to determine the spatial pattern and predict the level of vulnerability in other surrounding areas. The analysis was carried out based on the socio-economic and cultural conditions of parents of children with stunting obtained from interviews, processed by inverse distance weighted (IDW) and integrated with the results of Landsat 8 OLI-TIRS satellite imagery, in the form of percent building density (PBD), land surface temperature (LST), normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and normalized difference built-up index (NDBI). The ANN model is run using the back propagation method, with variations in the number of hidden layers as many as 3, 5, and 7, with variations in predictive input capable of producing variations in the stunting distribution and the level of accuracy. Based on the value of the root mean square error (RMSE), the increasing number of hidden layers and variations in input predictions contribute to producing better prediction accuracy, which is 68%-93%. Spatially, both directly explain the changes in the distribution of the spatial pattern of stunting susceptibility in the entire study area.