A. Córdoba , B. Durán , S. Bonardd , D. Diaz Diaz , A. Leiva , C. Saldías
{"title":"原位合成CuO纳米颗粒并将其固定在藻酸盐-聚氨基胺纳米凝胶中用于光催化应用","authors":"A. Córdoba , B. Durán , S. Bonardd , D. Diaz Diaz , A. Leiva , C. Saldías","doi":"10.1016/j.mlblux.2022.100148","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we report a feasible approach for preparation of crosslinked alginate (Alg) and poly(amido amine) (PAMAM) nanogels (Alg-PAMAM NGs), using a water-in-oil-in-water (w/o/w) double emulsion route, via strong electrostatic interactions between anionic groups coming from alginate and previously incorporated Cu<sup>2+</sup> ions. CuO nanoparticles (NPs) with average diameter about 65 nm were <em>in situ</em> obtained into Alg/PAMAM nanogels by treatment of embedded Cu<sup>2+</sup> ions in NGs with NaBH<sub>4</sub> at 25 °C under air atmosphere. The prepared Alg-PAMAM and Alg-PAMAM-CuO NGs were characterized using FT-IR and UV–visible spectroscopy, as well as scanning transmission electron microscopy (STEM). The presence of PAMAM dendrimers helped both to obtain structurally compact nanogels and an adequate stabilization of CuO NPs. Finally, the photocatalytic performance of the Alg-PAMAM-CuO NGs was tested via the decomposition of methyl orange in aqueous solution, under visible light irradiation.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"14 ","pages":"Article 100148"},"PeriodicalIF":2.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259015082200028X/pdfft?md5=a83b8c4446c7c845f35c57ec764d3af9&pid=1-s2.0-S259015082200028X-main.pdf","citationCount":"1","resultStr":"{\"title\":\"In situ synthesis and immobilization of CuO nanoparticles in alginate-poly(amido amine) nanogels for photocatalytic applications\",\"authors\":\"A. Córdoba , B. Durán , S. Bonardd , D. Diaz Diaz , A. Leiva , C. Saldías\",\"doi\":\"10.1016/j.mlblux.2022.100148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, we report a feasible approach for preparation of crosslinked alginate (Alg) and poly(amido amine) (PAMAM) nanogels (Alg-PAMAM NGs), using a water-in-oil-in-water (w/o/w) double emulsion route, via strong electrostatic interactions between anionic groups coming from alginate and previously incorporated Cu<sup>2+</sup> ions. CuO nanoparticles (NPs) with average diameter about 65 nm were <em>in situ</em> obtained into Alg/PAMAM nanogels by treatment of embedded Cu<sup>2+</sup> ions in NGs with NaBH<sub>4</sub> at 25 °C under air atmosphere. The prepared Alg-PAMAM and Alg-PAMAM-CuO NGs were characterized using FT-IR and UV–visible spectroscopy, as well as scanning transmission electron microscopy (STEM). The presence of PAMAM dendrimers helped both to obtain structurally compact nanogels and an adequate stabilization of CuO NPs. Finally, the photocatalytic performance of the Alg-PAMAM-CuO NGs was tested via the decomposition of methyl orange in aqueous solution, under visible light irradiation.</p></div>\",\"PeriodicalId\":18245,\"journal\":{\"name\":\"Materials Letters: X\",\"volume\":\"14 \",\"pages\":\"Article 100148\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259015082200028X/pdfft?md5=a83b8c4446c7c845f35c57ec764d3af9&pid=1-s2.0-S259015082200028X-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259015082200028X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015082200028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
In situ synthesis and immobilization of CuO nanoparticles in alginate-poly(amido amine) nanogels for photocatalytic applications
Herein, we report a feasible approach for preparation of crosslinked alginate (Alg) and poly(amido amine) (PAMAM) nanogels (Alg-PAMAM NGs), using a water-in-oil-in-water (w/o/w) double emulsion route, via strong electrostatic interactions between anionic groups coming from alginate and previously incorporated Cu2+ ions. CuO nanoparticles (NPs) with average diameter about 65 nm were in situ obtained into Alg/PAMAM nanogels by treatment of embedded Cu2+ ions in NGs with NaBH4 at 25 °C under air atmosphere. The prepared Alg-PAMAM and Alg-PAMAM-CuO NGs were characterized using FT-IR and UV–visible spectroscopy, as well as scanning transmission electron microscopy (STEM). The presence of PAMAM dendrimers helped both to obtain structurally compact nanogels and an adequate stabilization of CuO NPs. Finally, the photocatalytic performance of the Alg-PAMAM-CuO NGs was tested via the decomposition of methyl orange in aqueous solution, under visible light irradiation.